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CHAPTER L

INTRODUCTION

Weather radars and imaging sensors on geostationary weather satellites are cur-
rently the most widely used remote sensing tools for the short-term forecasting or now-
casting of warm season convective storms and for warning of severe thunderstorm
hazards. Zipser (1983) defines nowcasting as "the description of the state of the current
weather and forecasts within the valid extrapolation range for each phenomenon which
are based on intensive observations”. The valid extrapolation range is further defined "as
the period within which weather forecasts based upon observations and extrapolation are
useful”. The valid extrapolation period as well as the amount of lightning activity
depend on the phenomena being described, geography, season of occurrence, instability
of the atmosphere, and structure of the storm environment (Table 1). Dynamical
forecast models with explicit physics are presently more applicable to greater time and
space scales (Figure 1).

In a discussion of the stages of nowcasting, Wilson and Carbone (1984) state "the
first element of forecasting is simple extrapolation of event position and intensity. Pre-
diction of completely new development or onset of dissipation of the existing event is a
distinctly more ambitious nowcast objective”. Forecasts of the future location and inten-
sity of clouds, precipitation, lightning, or storm severity can be assessed by asking
yes/no or how much. Did it rain at all ? Was there any lightning with that storm? Was
there severe weather (flooding, hail, tornadoes, microbursts)? How much rain was
forecast? How much lightning? Extrapolation forecasting is akin to conditional expecta-

tion. What is the probability of rain at point P, in the next hour or two, given that it is



Table 1. Typical Linear Extrapolation Time Scales for Various Weather Events

Weather Event Time Scale for Linear Nonlinear Pre- Accompanying
Extrapolation Validity dictive Capability Lightning
{Nowcast) (Beyond Nowcast) Activity

Downburst/Microburst ~1to a Few Minutes  Very Limited  Ofien Many Intracloud Flashes,
Few Ground Flashes

Tornado ~11oaFew Minutes  Very Limited  Often Many Intracloud Flashes,
Ground Flash Rates Variable

Thunderstorm, Individual 520 Minutes Very Limited ~ Variable Ratio of Intracloud to
Ground Flashes

Severe Thunderstorm 10 Minutes to 1 Hour  Very Limited  Typically Many Intracloud Flashes,
Ground Flashes Variable

Thunderstorm Organized  ~1-2 Hours Some Typically Many Intracloud and

on Mesoscale Ground Flashes

Flash-Flood Rainfall ~1 1o a Few Hours Very Limited Vaffi\les From Many Ground Flashes
to None

High Wind, Orographic ~11o a Few Hours Some -

Lake-Effect Snowstorms A Few Hours Very Limited  Some

Heavy Snow/Winter A Few Hours Some Not Usually

StormyBlizzard

Frosi/Freeze Hours Some -

Low Visibility A Few Hours Some -

Air-Poltution Episode Hours Some -

Wind Hours Some -

Precipitation Hours Some Variable

Hurricane Many Hours Fair Variable

Frontal Passage Many Hours Fairto Good  Variable

*Adapted From Zipser (1983); Doswell (1986)
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raining at point P‘J now? Any ability to determine the presence, increase, or decrease of
lightning activity as a storm approaches a given location or facility will provide valuable
information to the user of these data.

With the recent advent of lightning detection and location technology, it is now
possible to directly measure the existence and frequency of lightning activity in storms
over large areas. The deployment of regional and national networks (Figure 2) using
magnetic direction finding (Krider et al., 1976) and time-of-arrival (Bent and Lyons,
1984) techniques to detect and locate cloud-to-ground lightning offers a new and
decidedly different nowcasting data source for real-time multisensor data fusion. In the
future total lightning rates (intracloud and cloud-to-ground) will also be observed in
real-time by a lightning sensor in geostationary orbit (Christian et al., 1989).

The observed lightning activity may be used in determining the existence, initia-
tion, movement, dissipation, configuration, areal extent, intensity, and redevelopment of
convective storms (Goodman et al., 1988a; Lewis, 1989). A recent evaluation of the
operational use of lightning data by forecasters at the National Severe Storms Forecast
Center (NSSFC) demonstrated great value in monitoring lightning activity for assessing
the threat of existing storms and in issuing weather advisories; most frequently when
storms were classified as strong (5-min update interval) and less frequently when storms
were weak (15-min update interval). Furthermore, when forecasters were asked if
lightning activity added knowledge about the general convective activity that could not
be obtained from either satellite or radar data, a positive response was acknowledged for
78% of 153 storm episodes considered strong and for 64% of 301 cases of storms con-
sidered weak (as subjectively characterized by the forecasters).

These preliminary results suggest that lightning activity and its association with a
storm or complex of storms should be quantified and used as a source of nowcasting in-
formation in knowledge-based and expert system/artificial intelligence/neural network

algorithms being developed and tested (Browning and Collier, 1989; Roberts et al., 1990).
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Figure 2. Demonstration national lightning network direction finder (DF) sites.
Three sites are part of the MSFC network at Tullahoma, TN (DF 2 = TI),
Centerville, TN (DF 3 = Ce), and Barton, AL (DF 4 = MS).

DF 1 (at MSFC) is not part of the national network.



The quantitative assessment of lightning activity offers a wide range of opportunities to
develop algorithms to evaluate the synergism of these data as an adjunct to the weather
radar, satellite, and conventional meteorological data (Watson et al., 1987; Goodman et
al., 1988). The Advanced Weather Interactive Processing System (AWIPS) currently un-
der development by the National Weather Service will be the first opportunity for all lo-
cal forecast offices to integrate, process, and transmit high volume radar, satellite, upper

air, and surface data.

The Need for Real-Time Lightning Qbservations

A recent survey of federal agency requirements provides a clear impetus for
developing real-time techniques to monitor lightning hazards (MSI Services, 1986). Ex-
amples include: 1) data requirements by the National Weather Service (NWS) during ac-
tive thunderstorm periods to issue severe weather warnings; 2) timely information
needed by the Federal Aviation Administration for flight safety, dispatch, and air traffic
control/operations; 3) reliable tracking of lightning to support the safe and efficient
operation of a variety of naval activities including operational and training flights,
weapons and munitions handling, and aircraft and in-port ship refueling ; real-time dis-
play of the location and direction of movement of cloud-to-ground lightning strikes
within 300 km to support Air Force strategic and defensive activities including refueling
operations, munitions handling, radar operations, computer operations, safety, and field
exercises.

Facility applications of lightning data include various test range activities such as
those conducted by the Air Force and National Aeronautics and Space Administration
(NASA) in support of the Space Shuttle and unmanned space vehicles, and by the
Department of Energy in support of the Nevada test site where underground nuclear

tests are conducted. Presently, NASA operates lightning detection systems at Marshall



Space Flight Center (MSFC), AL; Wallops Island, VA; and Kennedy Space Center, FL.
Lightning data from a Navy operated network are also distributed to the Stennis Space
Center, MS. The operational requirements for lightning data at test facilities are driven
primarily by the concern over personal safety. However, improved lightning warnings at
Kennedy Space Center also permit safe fueling operations during stormy weather periods
at an estimated annual savings of one million dollars. Real-time users of the MSFC
lightning network are shown in Table 2.

Utilities presently use lightning data to design protection for power lines and dis-
tribution systems, and to deploy repair crews during severe storms (Fischer and Krider,
1982). In general, lightning warnings tend to be very conservative, with many opera-
tional and training opportunities cancelled unnecessarily resulting in lost productivity.
This brief summary of applications strongly suggests that any lightning sensitive tasks
concerned with optimizing the safety and use of material and human resources can

benefit from the currently available lightning detection and location technology.

Review of Now ing and Extrapolation For ing Algorithm

A nowcasting system consists of two main parts: 1) some type of characterization
of the present weather situation and 2) a means (i.e., a model) to project the situation
forward in time and space. Forecast methods using weather radar to extrapolate rainfall
(an appropriate analog for lightning patterns), storm position, and intensity typically use
some reflectivity (intensity) threshold to define the convective storms as either cells
(clusters) or rain areas, correlate two or more successive observations to get a storm mo-
tion vector, and extrapolate the intensity pattern some time into the future.

The existing operational radar nowcasting systems extrapolate the characteristics
and full intensity of the precipitation pattern without consideration for growth/decay of

the rain intensity or its spatial distribution. The primary source of forecast error in a



Table 2. Real-Time Users of the MSFC Lightning Network

U.S. Air Force, Arold Engineering and Development Center, TN
U.S. Army, Redstone Arsenal, AL Test and Engineering Directorate
NASA, Marshall Space Flight Center, AL

Earth Science and Applications Division

Rocket Motor Test Areas

Information Systems Office

Safety, Reliability, Maintainability, and Quality Assurance Office
Neutral Buoyancy Simulation Facility

“Redstone Airfield Flight Operations

WAFF 48, Huntsville, AL Television Station
*National Weather Service Office, Huntsville, AL
1State University of New York at Albany, National Lightning Network

*Future Users
1Raw Bearing Information Provided by Three MSFC Antennas



study of rain patterns associated with weather fronts in Great Britain was attributed to
the development or decay of rain areas in 16 of 29 (55%) events (Browning et al., 1982).
Storm growth/decay, mergers, splitting, and fragmentation also compromise the perfor-
mance of peak reflectivity trackers (Crane, 1979; Rosenfeld, 1987), centroid trackers
(Barclay and Wilk, 1970; Duda and Blackmer, 1972; Zittel, 1976; Bjerkaas and Forsyth,
1980), and (pattern) correlation trackers (Austin and Bellon, 1974; Rinehart and Garvey,
1978; Browning et al., 1982).

Peak reflectivity trackers isolate and track local maxima in the reflectivity or
precipitation field. Such techniques tend to overestimate the number of physically
realistic storm cells, but do not miss the small, potentially severe storms that may not be
identified by the other methods which depend on intensity thresholds to delineate
storms. The centroid trackers use the 3-dimensional reflectivity weighted centroids
(storm mass) to delineate , characterize, and follow storm movement. Correlation track-
ers compare a field of reflectivity values at two successive times to get a motion vector
for the entire system (more applicable to widespread light rain situations) or in localized
sub-areas (applicable to individual thunderstorms).

The Bjerkaas and Forsyth (1980) mass weighted centroid tracker has been imple-
mented as a Next Generation Weather Radar (NEXRAD) system algorithm (NEXRAD,
1985). NEXRAD is the Doppler radar system being jointly deployed across the United
States and overseas by the National Weather Service, Federal Aviation Administration,
and Air Weather Service to replace the aging WSR-57 and WSR-74 network radars now
in service (Leone et al., 1989). These new radars offer numerous advantages over
present weather radars in severe thunderstorm warning, rainfall estimation, and the
detection of wind shears.

In a study comparing the performance of different types of storm trackers, El-
vander (1976) found the cross-correlation tracker performed best when presented only

base-scan (lowest elevation level) reflectivity data and the centroid tracker superior for
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volume-scan data (the data acquisition mode for NEXRAD). A comparison between the
Crane (1979) peak reflectivity tracker and centroid trackers showed general agreement of
the storm motion vectors. Brasunas (1984) recommended using the correlation tracker on
slowly moving widespread rain areas and the centroid tracker on the more convective
storms. For large areas with multiple storm motion vectors, Browning and Collier (1989)
suggested applying the correlation tracker to subareas within the confines of the larger
system,

Other sources of forecast error can be attributed to incorrect specification and
delineation of the initial pattern (measurement errors), errors in estimating the initial
pattern trajectory, and errors due to changes in the trajectory during the forecast period.
Examples of this latter effect are storms that upon becoming severe tend to move to the
right of the mean lower tropospheric wind (Newton and Fankhauser, 1964; 1975), and
rainbands associated with tropical hurricanes and extra-tropical cyclones where the am-
bient wind field imparts both a translational and rotational component to produce a cur-

vilinear trajectory.

uantifying the Valid Extrapolation Ran

Linear extrapolation of the present trend is perhaps the easiest and most widely
used method for nowcasting. However, the motion of the atmosphere and growth/decay
of convective phenomena are examples of complex non-linear dynamical systems. The
limitations of linear extrapolation with increasing time scale are readily apparent as the
forecast error becomes large and then exceeds the threshold value for an acceptable or
"useful” forecast (Figure 3). As noted earlier, the valid extrapolation period will depend

on the process under study, which itself will have some mean lifetime. A non-linear

10



T (a)
Linear ;
> Extrapolation :
€ :
S :
S R <« Error
2 4 N
$ . 7' Actual : !
5 |_-Y ) | Process
L N [} ] b
Vo v Time
oB10B2} Forecast
Current Time
Time (F)
(C)
(©) ;o
Simple Non- ¢

Linear Model s

\

)
1
1

1
1
]
[}
]
1
]
[]
]
1
1
1
[}
]
[}
\
]

~

O

F

No Longer
Valid

(b)

Error Bounds
of Acceptable
Forecast

g Valid &\

\

o---
m

(d)

250 l:

- PO

1 ,* .'.\ :

I / A

! Very Good 3!
L2 ! Nonlinear %s..
- : Model "
C F

Figure 3. Possible extrapolation model fits to a non-linear process based on two prior

observations (OB1, OB2) and the current observation:a,
b, valid extrapolation range defined by acceptable error bounds; ¢,

model fit that is worse than linear fit; d, good non-linear model fit

(after Doswell, 1986).

11

linear extrapolation model;
non-linear



model may be inferior to a linear one if the nonlinear model is applied beyond the valid
extrapolation range. In general, a non-linear model should provide the best forecast of a
non-linear process such as the growth/decay of a thunderstorm.

For large, approximately steady state weather systems containing widespread light
to moderate rain showers, extrapolation forecasts can be very accurate for up to 6 h
(Browning et al., 1982). Projecting the motion of intense thunderstorms that persist for
several hours (supercells) is not too difficult, but predicting if, when, and where it
might spawn a tornado is beyond present capabilities. The tornadic storm that struck
Huntsville, AL on 15 November 1989 is one example of an isolated supercell storm that
could be identified on radar in Mississippi 5 h before it reached the city and produced
an F4 intensity tornado that killed 22 people. Yet, the tornado struck with almost no
warning. Forecasts of convective weather phenomena at smaller space and time scales

can be much more difficult since they change size, shape, and intensity more readily.

Study Objectives

The objectives of this study are twofold. First, the applicability and limitations
of extrapolation techniques are explored relative to the problem of forecasting lightning
(i.e., thunderstorm) activity at a future location and time using data acquired primarily
from the NASA/MSFC ground strike lightning network installed, operated, and main-
tained by the author since 1985. Radar echoes and the spatial distribution of the lightn-
ing itself will be used to analyze, characterize, track, and examine extrapolative forecasts
of storm position and the accompanying lightning activity. Second, the usefulness of
physically-based non-linear models will also be examined for their applicability to the
lightning forecast problem and to determine the valid extrapolation range for different

weather scenarios.
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In Chapter 2 the lightning and precipitation time series for storm systems over a
wide range of space and time scales are examined. These results are used to develop a
conceptual understanding of the thunderstorm life-cycle. The three parameter logistic
model is offered as a candidate model of the thunderstorm life-cycle. Its properties and
their relevance to the extrapolation nowcasting problem are examined. The success of
an extrapolation forecast at time t+At is influenced by the quality of the data source
(analyzed in Chapter 3), an accurate description of the present situation at time t
(examined in Chapter 4), and correctly accounting for changes during the forecast period
(investigated in Chapter 5).

Chapter 3 discusses the process of finding the most accurate locations of the
cloud-to-ground lightning discharges. This process involves removing systematic errors
from the data and the application of an optimization technique to locate the most prob-
able position of each lightning discharge. A novel approach using isolated radar echoes
to constrain the error correction and optimization procedures to remove systematic errors
is described.

Chapter 4 presents a pattern recognition scheme that is used to generate initial
seeds or "first guess" fields for clustering the discrete lightning discharges into storm
cells. The clustering process is critically dependent on the prior accuracy of the lightn-
ing location estimates (Chapter 3) and the generation of subsequent storm life-cycle time
series (Chapter 5) relies on the cluster analysis procedure assigning the correct number
of lightning discharges (objects) to the proper storms (groups). The advantages and
limitations of different clustering strategies for storm identification and tracking are ex-
amined. Storm identification with lightning data alone is compared to storm identifica-

tion with radar alone, and some synergies for sensor fusion are explored.
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In Chapter 5 the logistic growth model is utilized to examine the storm life-cycle
over a wide range of space and time scales and address the potential of non-linear
regression models to improve upon short-term extrapolation forecasts. A physical inter-
pretation of the logistic model parameters and the resulting implications for determining
the valid extrapolation range is considered.

Chapter 6 summarizes the chief results of this research and discusses how these
results move the state of knowledge forward. Chapter 7 concludes the discussion and
offers future areas for additional research.

Appendix A provides the mathematical formulation for the optimization algo-
rithm (not currently available in the open literature) employed in Chapter 3 to find the
most probable flash locations. Appendix B contains the FORTRAN-77 source code used
to convert the raw data into geophysical quantities, correct the systematic errors in the
data, and compute the optimal flash location. Lastly, Appendix C contains the

FORTRAN-77 source code for the cluster analysis.
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CHAPTER II.

A CONCEPTUAL MODEL OF THE THUNDERSTORM LIFE-CYCLE

A conceptual understanding or model of the thunderstorm life-cycle is needed
for addressing the utility and limitations of extrapolation forecasts of non-steady-state
weather phenomena such as thunderstorms and their accompanying lightning activity.
The following discussion examines the lightning and precipitation time series for storm
systems ranging in size from an isolated airmass storm to a large mesoscale storm com-

plex encompassing an area of nearly 12,000 km?.

Air Mass Thunderstorms

The relationships between the early electrical development of a thunderstorm cell
and the vertical development of the radar echo, precipitation, and cloud top are depicted
in Figure 4. A significant fraction of the total lightning (50-95%) occurs between
regions of opposite charge within the cloud (intracloud lightning) without ever reaching
the earth (cloud-to-ground lightning). The initial discharge will almost always be
intracloud. Typically this discharge occurs 5-10 min after initial electrification, which
itself begins 5-10 min after the detection of a 35-40 dBZ radar echo aloft. Based on
lightning and radar data collected in three different climatic environments (New Mexico,
Alabama, and Florida), Buechler and Goodman (1990) find that the time lag from the
reflectivity exceeding 40 dBZ at the -10°C level (the height of the main negative charge
region in the thunderstorm central dipole) to the first intracloud discharge ranges from

4-33 min. The time lag is related to the rate of vertical development of the cloud. On
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average, the first cloud-to-ground discharge will be of negative polarity (it lowers nega-
tive charge to ground) and will occur 15-20 min after the initial radar echo is observed
in a vertically growing cloud. The stage is now set for the active lightning phase of the
thunderstorm life-cycle.

As the cell continues to develop, the active electrical phase may have a duration
lasting from a few minutes to many hours. The total amount of lightning and peak flash
rates of a storm are a non-linear function of its height, size, mass, duration, and en-
vironment (Shackford, 1960; Livingston and Krider, 1978; Williams, 1985; Cherna and
Stansbury, 1986; Goodman and MacGorman, 1986; Goodman et al., 1988b).

Figure 5 shows the relationship between lightning occurrence and precipitation in
a small airmass thunderstorm 26 km? in area (>18 dBZ) observed near Huntsville, AL
by the NCAR CP2 radar on 20 July 1986. The storm produced a strong microburst with
a velocity differential of 30 m s"l. Total lightning (intracloud and cloud-to-ground) ac-
tivity was measured by an instrumented mobile laboratory operated by the National
Severe Storms Laboratory (Rust, 1989). The mobile laboratory was also used for ground
truthing the lightning strike network, discussed in greater detail in Chapter 3.

The 20 July case represents a Byers and Braham (1949) type airmass thun-
derstorm. The mobile laboratory was situated under the storm throughout its 45 min
life-cycle and recorded 110 intracloud flashes and 6 cloud-to-ground flashes, all 6 of
which were detected by the ground strike network. The first intracloud discharge was
observed about 4 min after hail was initially indicated by radar, during a period of rapid
vertical development as the cloud top neared its maximum height of 14 km. The first
ground discharge occurred 5 min later when the maximum reflectivity core descended to
5.5 km and a weak outflow was detected by the radar.

Storm rain rates are computed from empirical Z-R relations developed by Mar-
shall and Palmer (1948), Jones (1956), and Seliga et al. (1986). The storm rainflux (kg

s1), mass (kg), and vertically integrated liquid water content or VIL (kg m~2) (Greene
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(after Goodman et al., 1988).
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and Clark, 1972) are calculated using a 30 dBZ threshold and the Jones (1956) relations
Z=486R™7 and M=0.052R%%", where Z (mm® m™®), or Z, is the CP2 reflectivity at
horizontal polarization, R (mm h'l) is the rain rate and M (g m3) is the liquid water
content.

The peak total flash rate of 23 min~! was reached another 3-4 min after the ini-
tial lightning, 6 min prior to the maximum microburst outflows, and in conjunction with
the peak in vertically integrated liquid water content (5.3 x 10® kg m™2), echo volume
(1.9 x 10" m®), and storm mass (3.3 x 10° km). The rainflux (1.5 x 10° kg s7!) and
storm averaged rain rates (18.2-28.2 mm h!) reached their maximum values in associa-
tion with a visual confirmation of pea-sized hail mixed with heavy rain about 2 min
after the peak flash rate.

Rapid-scan (5-min interval) satellite imagery from the GOES-E geostationary
weather satellite were collected during the storm life-cycle. The infrared temperature of
the cloud continued to show cooling (which could be misinterpreted as continued vertical
development) even as the radar echo top and lightning rates decrease (indicating storm
collapse). The misleading satellite signature is due to the small size of the storm and the
(effectively 4 km x 8 km) field of view of the infrared radiometer (which also "sees" the
earth’s surface). The radiometer field of view is underfilled at 1900 UTC. The field of
view becomes more fully filled as the anvil expands, thereby sensing a decreasing cloud
top temperature. However, the abrupt decrease in the total flash rate indicates storm
collapse and thus serves as a microburst precursor. Yet, no such signature exists in the

cloud-to-ground lightning evolution due to the small number of events (samples).
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A Multi-cellular Thunderstorm

Figure 6 shows the cloud-to-ground lightning and convective rainflux calculated
every 10 min from the WSR-57 radar at Nashville, TN for a multi-cellular storm ob-
served on 25 July 1986 over a period of 90 min. The convective rain area is simply
defined here as the precipitating area within the 30 dBZ reflectivity contour. The
lightning and rainflux are in-phase and are fairly well correlated (r=0.77). However, as
the storm decays the lighter rainfall area contributes more to the total precipitation such

that there is more rainfall per flash during storm decay than during storm growth.

Convective Storm Complexes

Figure 7 shows cloud-to-ground lightning and rainflux during a 7 h period of
observation on 13 July 1986 of a mesoscale convective system in the Tennessee Valley
that develops an extensive trailing stratiform rain region in the latter part of its life-
cycle. The lightning data recording was briefly interrupted for a tape change at 2240
UTC and continued at 2248 UTC, but the latter period is not shown here. Not long
after 2300 UTC the entire storm system could not be sampled adequately from the
Nashville radar as the storm moved out of range to the south. This case again shows ex-
cellent agreement (r=0.96) between the lightning and convective rainflux time histories.

Figure 8 presents a summary of the cloud-to-ground lightning and rainfall time
histories of mesoscale convective complexes (MCCs) in the Central United States studied
by Goodman and MacGorman (1986) and McAnelly and Cotton (1986). Such storm sys-
tems are readily identified by their persistence and extensive cold cloud shields in in-
frared satellite imagery (Figure 9). The typical precipitating lifetimes of MCCs are on
the order of 12 h with spatial extents of a few hundred kilometers. Much of the warm

season rainfall in the Northern Hemisphere (up to 70% in the major crop growing
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Figure 6. Lightning-rainfall relationships for a small multi-cellular
storm on 25 July 1986.
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Figure 9. NSSL lightning network shown in satellite projection with the infrared
cloud top image of a MCC during its mature phase (maximum cloud shield extent).
The 4-DF deployment during 1983 and the 350 km range ring are denoted by crosses
(after Goodman and MacGorman, 1986).
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regions of the U.S.), extensive flooding, and severe weather is a result of these organized
mesoscale circulations (Fritsch et al., 1986). Up to 25% of the entire annual lightning
strikes at a given site can be accounted for by the passage of just one MCC (Goodman
and MacGorman, 1986). Due to their meteorological and economic significance, any
nowcast/forecast skill that can be demonstrated for mesoscale storm systems is a
worthwhile endeavor.

The cloud-to-ground lightning activity increases and decreases exponentially over
the life-cycle of MCCs. Based on earlier studies and the preceding analysis, this
relationship appears to be generally valid for isolated storms, multi-cellular storms, and
the ensemble convection embedded in organized mesoscale convective weather systems.
The high correlations (>0.9) between lightning and rainflux extends over three orders of
magnitude from 101-10* km2. Earlier scaling studies indicate that precipitating cloud
dimensions are self-similar over 5 orders of magnitude (Lovejoy, 1982). Clearly, the
non-linear physical interactions that produce the microphysical and dynamical properties

of clouds are also relevant to their electrification.

Positive Polarity Cloud-to-Ground Discharges

Positive polarity cloud-to-ground discharges are often observed during the dis-
sipation phase of the storm (Krehbiel, 1986). In addition, positive polarity flashes fre-
quently occur 1) from thunderstorm anvils and storms which become severe and produce
mesocyclones, large hail, or tornadoes (Rust, 1986); 2) in association with long-lived wet
microbursts in low shear environments (Buechler et al, 1988); 3) in the trailing
stratiform rain region of mesoscale weather systems (Rutledge and MacGorman, 1988);
and 4) in the northern section of mesoscale systems, aligned with the geostrophic wind

and downwind from the most vigorous convection, which is dominated by negative
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polarity ground discharges (Orville et al., 1988; Engholm et al., 1990). The mesoscale
system that led to the Huntsville tornado produced positive polarity discharges in each

category listed above during some portion of its life-cycle.

A Conceptual Model of Cl Electrical Developmen Lightning Activi

Figure 10 summarizes these lightning observations into a conceptual model of the
growth and decay of a typical thunderstorm and its associated total lightning activity,
The temporal evolution of the lightning activity is in-phase with the development of the
storm updraft and is strongly coupled to the life-cycle of the thunderstorm described
above and in earlier studies by Byers and Braham (1949), Workman and Reynolds (1949),
and others. These results show the electrical development of the cloud is intimately con-
nected to its dynamical and microphysical development. Laboratory measurements by
Jayaratne et al. (1983) suggest that the charge transferred per collision is a complicated
function of particle size and type, cloud liquid water content, temperature, and even
chemical composition. A possible inference from these observations is that the greater
the production rate of precipitation and ice particles in a cloud, the greater the charging
rate of the storm. This is partially supported by the growing success of numerical
models in simulating the initial electrification of small thunderstorms (e.g., Ziegler et al.,
1986; Helsdor and Farley, 1987). Multi-cellular storms will exhibit impulsive updraft,
downdraft, precipitation, and flash rate growth and decay. Thus, the time rate-of-
change of flash rates also provides a signature of the growth and decay of the thun-

derstorm.
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CONCEPTUAL EVOLUTION OF THE
ELECTRICAL, DYNAMICAL, AND MICROPHYSICAL PROCESSES INSIDE THUNDERSTORMS
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Figure 10. Conceptual model of the temporal evolution of cloud electrical,
kinematic, and microphysical development.
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The Logistic Growth Model

Hald (1952) states that "the function used to represent the relationship between
variables should as far as possible be chosen on the basis of professional knowledge
about the problem under discussion and the reasons advanced for this choice are of fun-
damental importance as regards confidence in extrapolations”. The storm system size and
precipitation particle population have been shown to be important factors in maintaining
the charging/discharging process. One can attempt to characterize this process by simple
first order differential equations which have been applied to population dynamics to
describe the phenomena of growth and decay (Hald, 1952; Bard, 1974; Boyce and
DiPrima, 1977; Haberman, 1977).

The type of model needed depends on the the type of growth that occurs. These
types of models are mechanistic in nature, rather than empirical. Mechanistic models
are derived from assumptions on the type of growth, and these assumptions can be rep-
resented by differential or difference equations (Draper and Smith, 1981). Empirical
models are chosen to approximate the unknown mechanistic models. One likely can-
didate mechanistic growth equation is the "logistic" or sigmoid curve (Figure 11). The
logistic curve has frequently been used to describe the growth rates of populations (cells,
human and animal populations, chemical kinetics, telephone subscribers, and business
transactions).

Let t denote time or the magnitude of a growth factor which influences the size
y of the phenomenon observed, then dy/dt denotes the rate of growth per unit time.

Let the process be characterized by the general equation
dy
— = f(t,y) (2.1)
dt .

where the growth rate depends on both time and the size of the population.
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Figure 11. Logistic model with limiting value a plotted as a function of time t.
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Consider the following three special cases where

dy
— = f(y)e(t). (2:2)
dt
Letting f(y)=1, y, and y(a-y) gives
dy t 23
a g(t) (2.3)
dy
— = 2.4
i yg(t) (2.4)
dy
@ y(a-y)g(t), (O<y<a). (2.5)

In (2.3) the growth rate y depends on time, but not on the size reached. In (2.4) the
growth rate is proportional to the size reached and to a function of time. In (2.5) the
growth rate is proportional to both the size reached and the remaining size, as well as a

function of time. The latter case is the one of most interest. Now, write (2.2) as

dy
— = g(t)dt. (2.6)
) g(t)

Introducing the "logarithmic differential coefficient" (Hald, 1952, p.659)

din(y) _ 1 dy 2.7)

dt y dt

and letting f(y) = y(a-y) and g(t)=p gives a relation where the growth rate is propor-
tional to the size of the population and remaining size (where a denotes the growth is
limited to some maximum amount, i.e., the value that y approaches as t increases) as
well as a function of time. The growth rate relative to its present size, 1/y (dy/dt),
decreases linearly as y increases. The resulting solution of the differential equation is

the logistic function

a

y = W) . (2.8)
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This model is but one of many possible exponential growth models having similar forms
(Hald, 1952; Williams, 1959; Richards, 1959; Draper and Smith, 1981; Bard, 1974;
Haberman, 1977; and Myers, 1986). At t=0, the starting growth rate is a/(1+8). Also, as
t—o00,¥y—a

The slope of the logistic curve is positive and the second derivative (Draper and

Smith, 1981; Prof. Don Ryan, personal communication)

e (m2 )y(a-yXa-2y) (2.9)

has inflection points at y=0, o, and a/2. At the point of inflection y = /2, substitution
in Eq. (2.8) gives the time of inflection as t=(Inf)/k. We note that the curve is sym-
metric about this point, i.e., the system decays or diminishes at the same rate at which it
grows. Thus, for nowcasting purposes one might first compute the rate at which the
lightning activity increases (i.e., a growth rate) and the time required for a storm to
reach its peak discharge rate (the point of inflection). Based on symmetry, one would
then predict the storm to decay at this same rate and reach the end of its life-cycle in
the same number of time steps needed to produce the initial 50% of the total lightning.
In order to test and evaluate this model, one must develop a methodology for as-
sociating the discrete lightning events with their parent thunderstorms. This process is
addressed in Chapter 4. Next, generate a time series at uniform sampling intervals.
During each successive sampling period the parent storm must be tracked with time and
correlated with its past position. The extrapolation forecast results are presented in
Chapter 5. However, the pattern recognition process is strongly dependent on the

quality and limitations of the lightning strike data which is described next in Chapter 3.
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CHAPTER IIL
OPTIMIZATION METHODS FOR LOCATING LIGHTNING FLASHES USING

MAGNETIC DIRECTION FINDING NETWORKS

Intr ion

Magnetic direction finding (DF) networks for locating lightning strikes to ground
require that two or more receivers detect the characteristic radio signal produced by
return strokes (Krider et al., 1976). Once the signal is detected, an estimate of the most
probable flash position, sometimes referred to as the best point estimate (BPE), and a
confidence region can be constructed. The spatial distribution (or clustering) of the
lightning flashes, however, is a function of the dimension and vigor of the storm, the
orientation of the lightning channel and hence its radiation field, and the errors (both
random and systematic) associated with the technique.

The systematic errors due to DF site effects are a major source of network
degradation (Ross and Horner, 1952; Horner, 1954; Gething, 1978). When one or more
of the network DFs do not detect the flash, the location estimate must be determined
from a less favorable geometry (e.g., a flash along the baseline of two DFs, or a flash
more distant from one site than another site in a more optimal geometry). The
reliability of a fix (i.e., position estimate) can generally be maximized by using only the
two closest stations to the target (Stansfield, 1947). However, near the baseline of the
two DFs it is better to use a more distant receiver in a more favorable geometry (which
will usually produce a smaller confidence ellipse). This is the basis for the real-time al-

gorithm implemented in the earlier versions of the lightning DF networks manufactured
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by Lightning, Location, and Protection (LLP), Inc. (Krider et al., 1980). This algorithm
chooses the DF pair having the greatest signal strengths (presumably the two closest DFs
to the flash). If the flash is near the baseline of the DF pair, a solution can be com-
puted with the DF having the next strongest signal strength. An algorithm called
"multiple correlation optimization" now replaces the simple 2 DF technique described
above when three or more DFs detect a flash (LLP, Inc., 1988). This algorithm basically
performs a least squares minimization between the most probable flash position and the
sum of the bearing errors.

This latter algorithm, first introduced by Hiscox et al. (1984) and a more recent
eigen-vector algorithm introduced by Orville (1987) are very similar to a technique first
proposed more than ten years earlier by Wangsness (1973). All three algorithms attempt
to minimize the same objective function although different methods are used to reject or
flag "wild" bearings. Hiscox et al. (1984) also proposed the use of properly normalized
signal amplitudes as an additional weighting factor (or constraint) to determine the op-
timal location. The improvement in solution accuracy by this latter method is a function
of network geometry and the lightning location relative to that geometry. Mocre
recently, stochastic optimization techniques known as simulated annealing (Kirkpatrick
et al., 1983; Szu and Harley, 1987a; 1987b) have been successfully applied to the general
multiple DF/multiple bearing problem.

This chapter describes the application of an eigen-vector algorithm (called FFIX)
which is based on the technique described by Wangsness (1973). FFIX was developed on
or before January, 1973 (but apparently never published) for finding radio transmitter
locations anywhere on earth from multiple DF bearings. The technique characterizes the
measured bearings by bearing planes that pass through the center of the earth and by

their unit normal vectors. The BPE is determined from the vector from the center of
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the earth that minimizes the weighted sum of squares of its inner products with the nor-
mal vectors. A BPE and confidence ellipse are computed from the bearing data in terms
of the eigenvalues and eigenvectors of a 3 x 3 matrix.

This paper offers the first ever adaptation of the FFIX algorithm to the lightning
location problem. The author is indebted to Dr. R. Johnson of the Southwest Research
Institute and his sponsors at the Department of Defense for providing some documenta-
tion and the source code in 1985. The mathematical formulation for FFIX is provided
in Appendix A. Appendix B contains the FORTRAN-77 source code for the FFIX sub-

routine.

verview of the FFIX Algorithm

Individual DF bearings are corrected for systematic errors and correlated in time
for each lightning discharge before being submitted to FFIX to determine the most
probable lightning ground strike point (Figure 12). The input data consist of n station
bearings and their respective standard deviations (random plus any remaining systematic
errors). The root mean square (RMS) bearing error for each LLP DF is about 1°. Pre-
vious attempts to iteratively remove the systematic error have not wholly eliminated
them (Mach et al., 1986; Schutte et al., 1987). These techniques reduce the total bearing
error (i.e, the standard deviation) to a value approaching 2° at best. It will be shown
below that the standard deviation impacts both the BPE calculation and the confidence
ellipse.

Sines of the bearing errors are assumed to be independent normally distributed
random variables with zero means, but some bearings may be "wild". "Wild" bearings are

rejected by a process where all combinations of bearings are exhaustively evaluated until
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a consistent subset of bearings is obtained. A set of n bearings is "consistent” if the as-
sociated sum of squared bearing errors from the best point estimate is less than the 80%
value of in-z'

The BPE and confidence ellipse are computed from the largest "consistent” subset
of bearings. The algorithm employs two approaches for rejecting the "wild" bearings.
The first approach, called the "exhaustive method", is invoked when ten or fewer bear-
ings are submitted for a BPE. If the submitted bearings lack sufficient consistency to
form a BPE, then all subsets of n bearings are taken (n-j) at a time, where j= 1,2,3,...,
until an acceptable solution is identified or a lower limit on the number of bearings is
reached, in which case there is no solution. The lower limit is the greater of n/2 or 3.
Thus, the largest subset of consistent bearings forms the BPE. A "sequential method" is
employed when more than ten bearings are submitted for a BPE. If all n bearings fail
the consistency test, then the bearing that is more "inconsistent” with the bearing set is
rejected (i.e.,, the wild bearing). The remaining set of (n-j) bearings is examined as
before. In this way the most "wild" bearings are rejected sequentially.

In the event that the chi-square consistency test fails, the "best solution” is
chosen as the intersection of the bearing pair having the minimum semimajor axis in its
confidence ellipse. This argument assumes the best network geometry also gives the best
solution, all other factors being equal. This approach is supported by the earlier work of
Stansfield (1947). This final iteration is necessary in a small direction finder network
such as that run by MSFC (4 DFs) because nearly 50% of all flashes are seen by only 2
DFs. The probability of detection for the network as a whole would be significantly

poorer without this last iteration process.
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Proof of Concept

BPE Calculation for a 4-DF Network

The Marshall Space Flight Center (MSFC) 4-DF network has been in operation in.
the Tennessee Valley (southern TN and northern AL) since 1984. Figure 13 shows the
deployment of the DF stations and other ground-based remote sensing systems such as
radars and rawinsondes. The additional systems were operational during June and July
1986 in support of the Cooperative Huntsville Meteorological Experiment (COHMEX)
multi-agency field program (Dodge, et al., 1986). The radar and rawinsonde data are
used in this study to determine the location and characteristics of thunderstorms as well
as the structure (vertical profiles of temperature, humidity, and winds) of the storm en-
vironment.

At the present time FFIX is used only in post analysis and follows the exhaustive
rejection path shown in Figure 12. An example of the information computed for each
flash is given in Table 3. The flashes are stored in rows and columns which indicate the
hour of occurrence and flash sequence number. The file also contains the Julian day
(DAY); hour (UTC) of occurrence (TIME); number of flashes in the selected interval
(CMAX); flash time in hours, minutes, and seconds (HMS); latitude (LAT) and longitude
(LON) of the flash; an estimate of the first stroke peak current in kAmps (KA); the
maximum normalized signal strength (NSTR); the number of return strokes (RS); the
semimajor axis (SMA) in km; semiminor axis (SMI) in km; orientation (ORI) in degrees;
and area (AREA) of the error ellipse in km?; flash polarity (FLAG= "’ for negative and
'+’ for positive); and time of the flash in hundredths after the last second (MS). The

flash polarity is also indicated by the sign of the KA and NSTR fields.
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Figure 13. Deployment of the lightning, radar and rawinsonde network for
the Cooperative Huntsville Meteorological Experiment (COHMEX) conducted
near Huntsville, AL in 1986.
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Table 3. Lightning Discharge Data Base

--RECORD AT (ROW,COL) = ( 24, 6)

[DAY = 86194 SYD [ TIME = 230000 HMS [ CMAX = 11
[HMS = 232021 HMS [ LAT = 35.8841 DEG [ LON = 86.0345 DEG
(KA = -87.6 [ NSTR = -483.1 (RS = 2
(SMA = 6.3 KM [ SMI = 1.1 KM [ ORI = 5.9 DEG
(AREA = 23.6 KM2 [ FLAG = . [ MS = 0.00 HMS
--RECORD AT (ROW,COL) = ( 24, 7)

(DAY = 86194 SYD [ TIME = 230000 HMS [ CMAX = 11
[HMS = 232145 HMS [ LAT = 35.8995 DEG [ LON = 86.0451 DEG
[KA = -110.5 [ NSTR = ~260.8 [ RS = 3
[SMA = 9.2 KM [ SMI = 2.5 KM [ ORI = 79.0 DEG
(AREA = 72.3 KM2 [ FLAG = . [ MS = 0.62 HMS
--RECORD AT (ROW,COL) = ( 24, 8)

(DAY = 86194 SYD [ TIME = 230000 HMS [ CMAX = 11
(HMS = 232218 HMS [ LAT = 35.8602 DEG [ LON = 86.1261 DEG
(KA = -57.6 [ NSTR = -144.6 { RS = 3
[SMA = 3.6 KM [ SMI = 2.1 KM [ ORI = 62.3 DEG
[AREA = 24.6 KM2 [ FLAG = . [ Ms = 0.81 HMS
--RECORD AT (ROW,COL) = ( 24, 9)

[DAY = 86194 SYD [ TIME = 230000 HMS [ CMAX = 11
(HMS = 232301 HMS [ LAT = 35.8586 DEG [ LON = 86.1433 DEG
(KA = -70.2 { NSTR = -178.6 [ R§ = 1
[SMA = 3.5 KM [ SMI = 2.1 KM [ ORI = 62.7 DEG
[AREA = 24.1 KM2 [ FLAG = . [ MS = 0.75 HMS
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Figures 14 and 15 show an expanded view of a radar echo (as seen from the CP-2
radar) and the accompanying lightning strikes (shown as dots enclosed by the 50% error
ellipse) for a small storm in Tennessee on 13 July 1986. The ellipse is generated from
the type of information contained in Table 3. The lightning centroid is less than 5 km
from the main echo. Figure 15 is produced using a bearing standard deviation of 2°.
Figure 16 shows the corrected locations, but with a 1.5° bearing standard deviation, su-
perimposed on the radar reflectivity. The spatial dispersion of strikes is on the order of
10 km and is well correlated with the radar echo. By reducing the bearing standard
deviation from 2° to 1.5°, the semimajor axes of the 50% ellipse for flashes 6 and 7
(Table 3) are reduced (i.e., improved by) 40% and 24%, respectively.

Earlier studies of the natural distribution of lightning strikes produced by iso-
lated storms show that the lightning clusters are approximately 10 km in diameter
(Feteris, 1952; Hatakeyama, 1958; Krider, 1988; Goodman et al., 1988). In contrast,
however, the spatial distribution of the lightning in the trailing stratiform rain region
behind summertime squall lines and in wintertime regimes can be very sparse and

widespread (Rutledge and MacGorman, 1988; Engholm et al., 1990).

BPE Calculation for a 6-DF Network

Figure 17 shows an example of a flash detected by the 6 (now 7) DF lightning
network operated by the National Severe Storms Laboratory (NSSL) in Norman, OK
(Rutledge and MacGorman, 1988). This example shows how the consistency criterion is
used to reject "wild" bearings. The BPE labeled FIX #1 (SMA=9.2 km) uses all six DFs
as input, but the BPE uses only five bearings (DF 6 is rejected). The BPE labeled FIX
#2 (SMA=32.1 km) uses only the four DFs in Oklahoma as input, using all four. FIX

#2 using only the Oklahoma DFs is located 28 km northwest of FIX #1. The other
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Figure 14. Lightning during the period 2315-2325 UTC on 13 July 1986
superimposed onto the CP-2 radar echo prior to ground truth corrections:
- = negative polarity discharges; + = positive polarity discharges. Radar
reflectivity contoured at 18 dBZ and 40 dBZ.



10 km

Figure 15. The location and 50% error ellipses (2° bearing standard deviation)
for each discharge after radar ground truth corrections.
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Figure 16. Overlay of corrected lightning location estimates with the radar echo.
Same as in Figure 15 but with 1.5° bearing standard deviation.
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TEXAS

Figure 17. FFIX solutions for cloud-to-ground flash detected in Kansas by
the NSSL DF network.
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intersection points where bearing pairs intersect represent false or ghost targets. Figure
18 also shows the corresponding radar echo distribution and the location of FIX #l
(indicated by the large cross in southwestern Kansas).

Table 4 gives the error ellipse characteristics for FIXs #1 and #2, and for each
bearing pair. When a BPE cannot be computed for o, = 1.5°, one can increase o, by 0.5°
increments until a solution is acquired. In this way, the standard deviation is treated
more as a tolerance factor, rather than as an absolute.

The results of this test show that FIX #1 has the smallest error ellipse of all sub-
mitted DF combinations. For all paired-bearing combinations the DF (1,7) BPE has the
smallest semi-major axis, but the DF (4,7) BPE has the smallest ellipse area. Although a
solution is possible near the baseline of DFs (2,3), the error ellipse is quite substantial
because of the poor geometry, reflected in the large value of 0. The three greatest sig-
nal strengths are reported at DFs 4, 3 and 6, in that order. An algorithm that uses the
bearing pair having the greatest signal strengths would form a solution using the DF
(3,4) combination, but the resulting semi-major axis for the ellipse is 201.9 km and the
solution is displaced 14 km from the FIX #1 BPE. A solution could not be obtained
until o, was increased to 5°, again indicating a poor geometry. However, a solution
formed with the DF (4,6) combination reduces the semi-major axis to 23.3 km. Yet,
any solution with DF 6 must be treated with caution, since it is inconsistent with the
other bearings. One should ask whether the DF 6 bearing deviation is due to site errors
or if it is just a "wild" bearing. If this particular DF 6 bearing angle is inconsistent with
other flash BPEs in the same direction, then the deviation is due to systematic or site er-
rors. However, if it is just a chance occurrence, say 9 of 10 bearings at this angle are
consistent with the other DFs, then it was most likely a "wild" bearing. Following the
completion of the aforementioned analysis a large systematic error at DF 6 was inde-

pendently confirmed and the station moved to a new location in northern Kansas.
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Figure 18. Distribution of radar echoes and lightning activity corresponding
to the time of the FFIX solution in Kansas. Large cross indicates solution #1.
Radar contours at 18, 30, 40, 45, 50 and 55 dBZ.
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Table 4. Error Ellipse Characteristics for 6-DF Network

DFs c LAT LONG SMA  SMI ORI AREA RADIUS
Submitted | (deg) (deg) {deq) (km)  (km) (deg) (kmz) {(km)
1,2,3,46,7| 1.5 37.659 100.058 9.2 40 1513 116.9 7.4

1,2,3,4 1.6 37.874 100.220 321 4.3 1491 437.4 246
1,2 5.0 37.976 100.230 258.2 352 1477 28,508.9 198.0
1,3 5.0 38.086 100.347 213.0 332 1503 22,201.9 163.4
1,4 1.5 39.592 101.995 550.1 13.1 140.5 22,600.1 422.8
1,6 1.5 37298 99.521 18.7 9.1 168.0 535.9 15.1
1,7 1.5 37.704 99.343 14.2 135 1527 601.6 13.8
2,3 6.5 38940 100.791 24559 509 1566 392,398.0 1,888.1
2,4 1.5 37.557 99.991 75.5 8.0 1474 1904.0 57.9
2,6 1.5 36915 99.630 27.0 8.9 1716 751.7 211
2,7 1.5 37639 100.038 16.8 124 8.6 655.2 14.8
3,4 5.0 37.751 100.175 201.9 268 149.8 16,968.5 154.8
3,6 1.5 36.754  99.675 26.3 6.9 166.1 566.5 20.3
3,7 1.5 37.598 100.098 16.3 106 1752 544.4 13.9
4.6 20 37114 99.573 233 9.3 1547 676.1 18.4
4,7 1.5 37.626 100.057 145 102 146.7 465.1 12.6
6,7 1.5 38.158 99.277 23.0 6.9 235 500.3 17.9
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Systematic Error Corrections

The FFIX algorithm has also been used in this study to correct for the systematic
errors arising from site effects (Horner, 1954; Gething, 1978). Site errors cause bearing
errors that are themselves a function of direction. The 12° bearing deviation from the
BPE at DF 6 in the previous example was due to unresolved site errors. Site errors are
one of the chief limitations to achieving the optimal location accuracy, and perhaps the
most Hifficult problem degrading network performance.

Previous attempts to correct for the systematic errors associated with lightning
direction finding systems employed some type of optimization procedure that minimized
the difference between the observed bearings and the “"true" target location. The "true"
target location can be determined by visual ground-truth (Mach et al., 1986) or by as-
suming that one or more of the direction finder bearings is correct (Hiscox, 1984; Or-
ville, 1987). This latter method will give self-consistent solutions (as applied to the DF
6 bearing deviation described above), but spatial bias effects may still be present (e.g.,
lightning clusters offset from radar echoes). Rocket triggered lightning strikes at Ken-
nedy Space Center, FL have also been used to provide ground-truth, but this is only ap-
plicable to a single bearing line from any direction finder station. In practice, it is very
difficult to obtain visual ground-truth at a large number of discrete bearings. Schutte et
al. (1987) reversed the role of transmitter and receiver by radiating a 1 MHz signal suc-
cessively through each loop of the direction finder antenna whose amplitude could then
be measured by a radio receiver at a number of bearings from the site.

The ultimate litmus test of any of these methods (and the practical usefulness of
these data over a large domain) should be determined by the degree of spatial correlation
between clusters of lightning strikes and their associated radar echoes. Most lightning

strike networks have either partial or full weather radar coverage, thus making this
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validation technique practical for all but a few users. A new technique is presented
below that uses isolated radar echoes to constrain the error correction and optimization

procedures to remove the systematic errors.

Defining the Sample Subset

A sample subset of lightning strikes is constructed for a short time interval cor-
responding to low-level radar scans of isolated storms distributed about each DF (refer
to Figure 14). The interval should account for the propagation of the echo. If the echo
moves slowly, then the time increment can be increased to enlarge the lightning sample

size.

Computing the Bearing Deviations

Next, the lightning strikes are superimposed on the radar image and the position
of the reflectivity core is marked. The bearings from each DF to the storm core are
computed and these are referred to as the "true” bearings. The lightning flashes are
replotted (Figure 19) and the deviations between the observed and "true" bearings are
computed. There are 11 flashes associated with this storm in the 10 min interval be-
tween 2315 and 2325 UTC.

Flashes 6 and 7 (refer to Table 3) have the two largest semimajor axes of 6.3 km
and 9.2 km, respectively. Table 5 shows that these are two of the three flashes only
detected by just two DFs. The low number of flashes seen by DF 2 indicates another
source of network performance degradation. Poor detection efficiencies and even "blind
spots” due to site effects (e.g., poor ground conductivity) have been noted by other users
of such systems . Because one or more sites may not detect a flash, the location must be

determined from a less favorable geometry (e.g., a flash along the baseline of two DFs or
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Figure 19. Bearing lines from each of the DFs to the reflectivity core of the
subject storm.
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Table 5. DF Bearings and Site Error Corrections

Flash DF 1 DF 2 DF 3 DF 4
1 19.9 5.6 86.3 51.4
2 18.2 - 84.6 48.9
3 19.8 - 87.3 51.3
4 18.7 - 85.5 50.7
5 19.8 - 87.6 -
6 - 4.1 - 51.7
7 - - 86.5 51.2
8 19.6 - 88.2 51.1
9 18.8 - 88.0 51.9
10 19.6 9.5 87.2 51.6
11 19.4 4.6 88.4 52.1

Median 18.7 5.1 87.5 51.5

True 17.1 350.4 84.8 49.0

Deviation -1.6 -14.7 =2.7 -2.5
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a flash more distant from one site than another in a more optimal geometry). Over a
large area, say 300 km from the center of the network, we find that nearly 50% of all
flashes are only detected by two DFs.

Because of the small sample sizes, choose the median bearing as the measure of
central tendency. The median is a more robust estimator in that it is less sensitive to
outliers or "wild" bearings than is the sample mean. Others have chosen median estima-
tion for dealing with bearing information for just this reason (e.g., Lenth, 1981). In
practice, one would try to find a number of storms close to the bearing angles in use
here (we try to get samples in 6° azimuth bins) to further increase the sample size. The
median observed bearing and "true” bearing to the storm are also presented in Table 5.
The nearly 15° deviation at DF 2 is further evidence that the site is poor. Large site er-
rors such as this in certain directions, however, are not that uncommon (e.g., Schutte et

al., 1987).

Computing New Solutions With the Corrected Bearings

Figure 20 shows a close-up view of the lightning locations before any site error
corrections are used (shown as dots) and after the initial bearing corrections are imple-
mented (again described by the 50% error ellipse). The lightning centroid is displaced
10 km to the southeast of the main echo. Figures 15 and 16 show the lightning locations
described by the 50% error ellipse after the bearing corrections from Table 5 are imple-
mented. The lightning centroid is now less than 5 km from the main echo. The impact
of uncorrected bearing errors on the clustering process and storm identification is dis-

cussed further in Chapter 4.
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Figure 20. Location estimates and 50% error el
radar ground truth corrections.

lipses for each flash before
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Site Error Polynomials

Once the data base on site error corrections is generated, one would fit a polyno-

mial to the data having the form
y=a_ + Ik: (sink® + cosk®), k=1,2,3,...,6 (3.1

where vy is the site error correction to the observed bearing 6. One of the motivations
for choosing a polynomial fit of this form is that the real-time hardware can implement
the polynomial (but only to 4th-order) in real-time. Figure 21 shows the site error cor-
rection curves for the four DFs. The curves were produced by computing site error
corrections in 6° bins using the technique described by Mach et al. (1986) and Orville
(1987). A nonlinear regression was performed using the method of Marquardt (1963) to
compute the polynomial fit to Eqn. (3.1).

Another way to examine the network performance using the error ellipse is to
make plots such as Figure 22 where 30 min of lightning data are shown from 2300-2330
UTC with increasing thresholds of the semimajor axis (SMA). The locations compare

reasonably well with the radar data even with a semimajor axis of 20 km.

54



DF 1
A

*P
r- om em e P om em o em em® em em osm s b em m m e - e em em

o e} o 0

w0 N o 9..
(seaibaq) uonosailon Huuesg

A
r
-5.0:
. eOnece B eece JoseeSlrrce 72eces eaee |u----1’..--l“-..“.---|Q....1“-.-mb..“--“...m---“...”---“n..“...-.---

! ;
>
A“A &.
| = H
<
< | 3
| < H
1 < u
- "
< H
]
AA*_" u
<
| <
< ] H
<
| L
—‘ 4
<
o 3
< | s
5
| =
& ?
<l m
E |
¢ " g
<! 3
1. g
< H
D P 3
D= I
| < .
: :
<
< ) M
< | .
| « m
P g
| < H
A“ n.
“ 1 :
< < H
I
i< m
] < ]
| < "
< \ H
< | -
[ n
I <« :
olllolll.)l]-Mllolllolllom
B ST o\ S
- v 6 6 g & <

(sea4baq) |[enpisay

Figure 2la. Site error polynomial and residual for DF 1.

55



DF 2

<A
<o
<o
< [
< a
<o
a
e
< -
< a
< [N
a <
a <
<&
-< [ 3
< o
<&
<
«a
[ %
L { Y
< a
< [ 3
< -
< [ Y
a«
a <
[ 3
<o
< &
<
<a
< a
L 4 a
< a
e
o
e
<a
<a
< a
< [ %
< a
[ % 4
a<
<o
<o
-
< [
< (9
A’
L3
a
<O
——t— o - - b - X0

w o 7o) o

(sea16aq) uopnoaiion Buueeg

e om b em mn mm em® o em pem Femem

Sheeee T2ocee $once 108 cceelBuave (4bose 163eeelB0cne 190on BB oc Db eon 20 eee PO vee 200 o I00- oo -Roce IM2- e 0oees

eOseew tBence Iaven

]
R
<\
<
< [
€
|
1 <
< ]
< 1
< [}
[}
]
<i
« 1
© %
{ <
] -
| <
<«
< |
< [}
< 1
<« |
[}
1
*_, <
<
< |
< ]
<)
1 <
[}
1 <
&
< 3
< 1
< 1
I <
1 <
1
\ <
*
< |
< I
< |
]
!
.m. <
<
<"
< 1
<y
¥
|
L 3
PRSP OEEISPUIUEY £ P S—

(seasbaq) |enpisay

*

S4eenn 72200 90-vo 108 .-..|a....1“...‘n..-.|»...|..-41¢.--m..-3}..-m..A.“...”...a‘....m.......

cQeoee 18ecen Iosen

-3

Figure 21b. Site error polynomial and residual for DF 2.

56



DF3

< a
L2 9
a <
< a
a
o <
a
<
< o
<« a
A«
a«
a<
< «a.
< a
<a
o«
- PAI.
<o
<
<
o<
a<
< o
«< a
ae <
<o
«< a
< &
'S
< &
a «
[
[
a
e
< a
o O
« a
& 2
«n
— et o m * m om ¥ KRS e e
- () - (9]

€0+ =180~ =~ < 180« - = 2200+ - - - 220+ « = - 240> = - - 200 « - = 200- - - - 300- - »» 320~ -~ 340 - - =

- <
o<
« APD.
< a
< 0.
4.9
PAI.A
«<n
a
o
o« 5
:
H
H
8
)
H
H
%
H
H
H
2
X
H
H
H
8
'
:
H
H
2
.
'
H
H
]
.
H
H
)
® e o = e,
(48] <t _.n_u

(seaibaq) uopoalsion bupeag

i :
< t
< m.
] < ’
]
<
)
"< m
< H
< | 8
< H i
) < H
<
< g
M H
|« m
< ¢ ’
< | M
+ g
¥ ;
2
i §
| « :
— .
L 4
< g
A+_ ».
1 :
12 3
< :
-« ] .
<1 m
1< ;
| <
«< i m
«< ,_* :
; 8
< “ :
< 1 ”.
“< 3 .
< m
1< 2
H H
< H
< | ¢
< H
< 1 .
&
| < "
M :
—— * h +* .llo.
N -— o nd_

(s9a1baq) _m_,.m_mwm

Figure 2]e. Site error polynomial and residual for DF 3.

57



P
AA

H
H
<a H
[ ] H
N>R
< a H
< [
< o 3
<a m
4 < u
L2 4
T8 !
[a “ 3
< o« 8
<a B
<a '
e B
<o '
<a :
< g
<a ¢
[ H
e i
<a i
< a H
< a 5
< a H
ac ..
a -« -
LR :
<a &.
< a -
- - H
< o H
<a g
a ’
[ ¥ “.
[ 23 -
o< .
e H
« 4
< [ Y H
< a H
[
. « m.
ax '
<a &
<a "
L a H
< & v
a < ﬂ.
<a '
<o <
< 3
[ H
<a '}
< a .
1
H
-
2
H
H
¢

<
-

)
-

Somemt m m t moem P e P s b e e b o o #

N~ © w < ™ « - o

-1

(seaubaq) uonoaiion Buleag

A

L e e ae

A

A
A A
A

A
e R e Gt

A
A

A

A
“0eoee t8eene Meree Bbevec T2ucee §0ccee 108cccc12Bece (dbosa i acallocctiBhovediocr2WheccdBDace 0 acs200 oo I00 oo odBhoeeediBeecanoen

A

A

A

A

A
A

¢ ¢ o ¢ S s
D O m Om

6 6 6 60

(seaisbaq) jenpisey

-0.6
-0.9

Figure 21d. Site error polynomial and residual for DF 4,

58



(a) SMA = 0o (b) SMA < 2km

L\ [\
i .
' - ",
v, t e .
PO S -
G - g O
rﬂ‘:-- -l't‘ f. . "\-“"‘,g-.
2300 - 2330 2300 - 2330
{c) SMA < 10 km (d) SMA <20 km
N T

Figure 22. Lightning plots during the period 2300-2330 UTC with semimajor
ellipse axis thresholds: a, infinity; b, 2 km; ¢, 10 km; d, 20 km.
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CHAPTER 1V.

CLUSTERING METHODOLOGY

Storm Identification

Before generating a lightning time series, a pattern recognition scheme is needed
to identify the collection of flashes belonging to an individual storm or storm complex.
For example, Peckham et al. (1984) manually identified storms and storm systems during
a 3-h sample period using a 2-station lightning network in Florida (Figure 23). Closer
inspection of Figure 23 shows subareas of greater flash density within the closed con-
tours representing the boundaries of the 13 storm cells labeled A-M. Given that the
average thunderstorm lifetime is less than 1 h, these subareas are highly suggestive of
smaller thunderstorms that existed during a portion of the 3 h observation period.

In a recent investigation examining the fusion of lightning ground strike infor-
mation with satellite imagery, Goodman et al. (1988a) subdivided the lightning flashes
contained within a 4 x 10° km? area into grid cells having a dimension of 0.1° latitude
by 0.1° longitude. The selected grid cell dimension of approximately 10 km is much
greater than the random position errors, yet also represents the typical diameter of an
individual thunderstorm cell. This process was applied during a 1 h period to successive
5-min sample intervals to permit the manual (human judgment) identification of in-
dividual and multi-cellular storms using an interactive workstation (Figure 24). The
closed contours outline the lightning density maxima and can be used to track the move-
ment, merger, and splitting of clusters. The 5-min sample period is commensurate with
the NEXRAD radar and geostationary weather satellite sampling intervals. In the sec-

tion below this process is taken a step further and investigate the use of a clustering
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Figure 24. Cloud-to-ground lightning contour maps (number of discharges per
cell per 5 min) of storms embedded within a mesoscale convective system in
North Alabama on 11 June 1986. Time in UTC. (after Goodman et al., 1988).
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algorithm to assign the individual lightning flashes (the objects) to their respective
storms (the groups). New members can be assigned iteratively to a new or existing

storm during each sampling interval and tracked with time.

Selecting a Clustering Algorithm

Various clustering methods can be used for such object classifications. Sokal
and Sneath (1963), Anderberg (1973), Hartigan (1975), and Romesburg (1984), for ex-
ample, have written entire books on the subject of cluster analysis. At its most basic
level, clustering is the grouping of similar objects. All clustering algorithms are proce-
dures for searching through the set of all possible clusterings to find the one that fits the
data reasonably well (Hartigan, 1975).

The clustering procedure begins with the choice of some initial partition of the
data which is then modified so as to obtain a better partition. The basic concept of
these methods is similar to that of the steepest descent algorithms used for unconstrained
optimization in non-linear programming (Anderberg, 1973). These algorithms begin
with an initial point and generate a sequence of moves to find an improved value of the
objective function until a local optimum is found. The search may involve sorting by
variables, switching objects between clusters, joining objects together, splitting objects
apart, adding objects to pre-existing clusters, or specialized searching of a subset of
clusters (Hartigan, 1975).

Joining algorithms have been used previously to identify storms from radar
base-scan reflectivity patterns for the purpose of extrapolating storm motion (Blackmer
and Duda, 1976; Browning et al., 1982). The basic method follows:

Step 1. Identify all gridpoints with local reflectivity maxima above some

threshold value.

Step 2. Compute the spatial separation between each pair of maxima.
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Step 3. Combine the nearest pair together to form a new cluster.

Step 4. Repeat steps 1-3 until only one cluster remains or a stopping
condition has been reached (e.g., a threshold on the minimum
separation distance needed to define a cluster as a storm or storm
complex). The result can be visualized as a linkage tree or
dendrogram describing the level (distance) where individual clusters
join together.

Step 5. Repeat steps 1-4 for successive radar images. Compute motion

vectors from the individual cluster displacements between sampling
intervals.

The K-Means Algorithm

The joining algorithms produce a large number of clusters which are then
reduced to a manageable number more for the sake of convenience rather than for
quantitative reasons related to the physical process itself. Chiefly for this reason, and
because of computational expense (as many as 8000 discharges per hour have been
detected by the MSFC network), a switching (or transfer) algorithm called the K-means
or K-nearest neighbor algorithm was selected for grouping the lightning discharges into
storm clusters. The algorithm begins with an initial partition of the data (referred to as
seed points) and obtains new partitions until no additional switches in the neighborhood
of the initial partition improve the classification. Thus, a local rather than a global op-
timum is sought. The stopping criterion is reached when no movement of an object
from one cluster to another will reduce the within-cluster total sum of squares. The
IMSL implementation of algorithm AS 136 developed by Hartigan and Wong (1979) was
used for this purpose. Appendix C contains the FORTRAN-77 programs developed by
the author for generating the seeds and calling the IMSL subroutine KMEANS. The

clustering of the lightning data is implemented as follows:
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Step 1. Define an area of interest and subdivide the lightning flashes
occurring during a sample interval into grid cells having a dimension
of 10 km x 10 km. Sample intervals of 5-min and 10-min are used
with the choice a function of either the corresponding radar sampling
interval (when used for intercomparison or validation experiments) or
storm lifetime.

Step 2. Search the data matrix for isolated lightning density maxima and
label these as possible seeds. A default threshold of 0.02 discharges
km~2 (2 ground discharges per 100 km?) is used almost exclusively
(see Step 5 below).

Step 3. Use the K-means algorithm to obtain optimal partitioning of the
lightning into storm clusters.

Step 4. (For storm tracking purposes). Repeat steps 1-3 for successive
sample intervals. A storm motion vector can be computed from the
successive cluster centroid displacements and a time series can be
constructed from the successive cluster memberships.

Step 5. (Hybrid Scheme). Step 2 may generate more seeds than desired
(or physically realistic) in which case the clusters are not sufficiently
coherent to track during successive time intervals in Step 4.
Occasionally too few seeds are generated and Step 3 fails to converge
to a solution. In the former case with a richness of seeds, the initial
clusters are joined until the number of remaining lightning clusters
can be correlated (i.e., tracked) over successive sampling intervals.
The clusters can be joined further until only a single cluster
representing an entire complex of storms remains. This final cluster
can be used to generate and analyze a time series for the entire storm
system. In the latter case having a deficit of seeds, the seed threshold
value is lowered to 0.01 discharges km2 ora5km x 5 km grid
subarea is searched for additional seeds.

Step 6. (Sensor Fusion Scheme). Steps 1-5 address thunderstorm
identification with the ground discharges alone. An alternative
seeding method employing radar data has been evaluated. In this case,
the peak reflectivity tracker or NEXRAD tracker schemes can be
used to identify the storm cells. These cell centroids then serve as

the seed points for clustering the ground discharges with the
K -Means algorithm,

Demonstration of Method

Storm systems ranging from individual thunderstorms to large complexes of
storms are used to evaluate the performance of the clustering procedures. The basic al-

gorithm is first described for a case of thunderstorm cells embedded within a fast
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moving pre-frontal Squall line that produced widespread severe weather as it crossed the
Tennessee Valley during a 9 h period in the afternoon of 15 November 1989. The
widespread precipitation pattern (rain/no rain) and reflectivity peaks (above a threshold
of 40 dBZ) are depicted at 2000 UTC (1400 CST) in Figure 25. The most active hour of
cloud-to-ground lightning activity takes place from 2000-2100 UTC. The image is a
composite constructed from several NWS network (e.g., Nashville, TN; Centerville, AL;
Jackson, MS) and local warning (e.g., Huntsville, AL; Tupelo, MS) radars in the region.
An isolated supercell storm ahead of the line (labeled T) was overtaken as the line
moved northeastward more rapidly than the cell (Figures 26-28). The average system
motion vector was 25 m s™! from 235° (due north is defined as 0°). The merger and
subsequent interaction of the gust front from the squall line with the supercell led to an
F4 intensity tornado (estimated wind speeds of 92-116 m s1) at 2230 UTC that killed 22
people in Huntsville, AL. The ambient wind in the lower troposphere derived from at-
mospheric soundings at 1200 UTC (235° at 6.7 m s-1 at Centerville, AL (CKL) and 230°
at 8.5 m s*! at Nashville, TN (BNA)) is much less than the storm motion vector. In ad-
dition, the supercell storm had an average storm motion vector (indicated by the large

dots) of 243° at 18.3 m s, 8° to the right of the mean wind.

Define the Region of Interest

Isolated lightning discharges of both positive and negative polarity occurred both
ahead of the line from thunderstorm anvils and from the trailing stratiform rain region
behind the main line of storms. Lightning activity during a 1.5 h period prior to the
Huntsville, AL tornado is shown in Figure 29. The analysis region of interest is shown
in Figure 30. The lightning flashes are converted from earth coordinates (latitude, lon-
gitude) to rectangular coordinates (x,y). For convenience, the geographic coordinate

(0,0) at the center of the map represents the location of the MIT/Lincoln Laboratory
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Figure 25. Composite precipitation pattern at 2000 UTC (1400 CST) on 15
November 1989 observed by the regional network of NWS radars. The radar
reflectivity is contoured at 18,30,40,45,50,55 dBZ (VIP levels 1-6).

Small solid circle = Reflectivity cores > 45 DBZ; large solid circle = track

of the tornadic supercell storm every 15 min. The motion vector of cells within the
squall line indicated by the wind barb is 25 m s’ from 235°.
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Figure 26. Composite precipitation pattern at 2100 UTC on 15 November 1989.
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Figure 28. Composite precipitation pattern at 2230 UTC on 15 November 1989.
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Figure 29. Cloud-to-ground lightning activity from 2105-2236 UTC on 15
November 1989. - = negative polarity discharges; + = positive polarity discharges.
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FL2 Doppler radar (refer also to Figure 24). The radar was situated just north of the
Huntsville airport (HSV) during the COHMEX field campaign to study thunderstorm
downdrafts, outflows, and gust fronts hazardous to aviation., This transformation is for
the convenience of some lightning-radar intercomparisons discussed later. Figure 31
depicts the centroid of all lightning activity in successive 5-min intervals from 2130-
2235 UTC. The plotted track of the tornadic supercell storm, T, was computed every
15-min during the interval 2130-2230 UTC from the National Climatic Data Center 16
mm film-archive of the Nashville, TN (BNA) radar scope. The initial damage from the
tornado (labeled t) occurred on Redstone Arsenal at 2230 UTC.

The clustering procedure begins by summing the lightning discharges into 10 km
grids within an m-row by n-column matrix such as that pictured in Figure 32. The
evolution of the lightning activity associated with the main line of storms can be fol-
lowed from the series of contour maps (> 0.02 flashes km2 shaded) in Figure 33. A
contoured lightning map during the 5-min interval 2215-2220 UTC indicates the loca-
tions of greatest lightning density that might serve as candidate seed points (Figure 34).
In the following discussion, the gridpoint (20,20) is at the center of the data matrix and

corresponds to the aforementioned geographic reference point at (0,0).

Identify the Cluster Seeds

Step 1. A copy of the m x n data matrix D is generated and designated
as the seed matrix S,

Step 2. A 3 x 3 point window searches directionally by rows through S
from the upper left-hand corner (1,1) to the lower right-hand corner
(m,n) to identify isolated lightning density maxima (Figure 35).

Any non-zero grid point S(i,j) at the center of the 3 x 3 window
having a neighbor greater or equal to itself is also set equal to zero.
Otherwise, the point is left undisturbed in S as a candidate seed. For
example, the gridpoint S(15,20)=8 is greater than its neighbors and is
designated as a seed. When the center of the window reaches the
gridpoint S(16,20)=6, the value of 6 is less than the neighbor above it
and is set equal to zero. A single pass through S would produce the
seeds indicated in Figure 36. However, note that the points
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tornado touchdown and tree damage on Redstone Arsenal. The FL2 radar is
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Figure 33. Evolution of cloud-to-ground lightning activity in 5-min intervals
between 2135-2235 UTC. Contours are approximately 0.01 discharges km2
and 0.02 discharges km™2 (shaded).
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Figure 34. Contoured lightning density map during the period 2215-2220 UTC.
Contour interval is every 0.01 discharges km~2 beginning with the value 0.02
discharges km™2.
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m-row x n-column data matrix D. Lightning shown for the period
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$(13,22)=2 and $(17,20)=2 are not isolated maxima in D, but result
from the left to right search direction of the 3 x 3 window. Such
spurious seeds are removed by step 3.

Step 3. The original data matrix D is scanned locally for a neighbor that
mnght be larger than the candidate seed itself, but had been set to
zero in S in the prior step. If a nelghbor is not a seed, but is still
greater than the candidate point in question, then the candidate point
is not an isolated maxima and is set to zero. For example, let the
window continue movmg through S until the center of the window is
at $§(17,20)=2. S(17,20) is now a candidate because $(16,20)=0
resulted from step 2. However, $(17,20) < D(16,20) so S(17,20)
should also be set to zero. Thus, one pass produces the final S
matrix of exactly K seeds (Figure 37).

Step 4. Define a set of criteria for establishing the number of valid
seeds. In thxs example, there are 17 seed points having at least 0.01
flashes km™2 (or 1 flash within a 10 km x 10 km grid). The possible
seeds consist of 7 seeds produced by single lightning discharges of
positive polarity, 5 produced by single discharges of negative
polarity, and 5 seeds with a density greater than 0.02 flashes km™2 A

sensitivity study of possible criteria and their justification are
discussed below.

Determine the Cluster Memberships

The initial partition of K seeds is critical since the K-means algorithm must op-
timally assign the lightning flashes to one of exactly K clusters. A different initial par-
tition (determined by the number and location of the seeds) might produce a different
final partition and storm motion vector based on the tracking of the seeds. Furthermore,
any change in cluster membership also alters its time series.

Figure 38 shows the the cluster assignment for each flash occurring between
2215-2220 UTC and the location of the 5 seeds (labeled a-e) identified in step 4 above
with a density of 0.02 flashes km2 or greater. Seed densities of 0.01 flashes km™2
excepted and the location of the tornadic supercell storm (labeled T) as observed by the
BNA radar is indicated. The Tennessee-Alabama border is approximately 45 km north

of the reference point.
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Figure 36. Diagram of the seed matrix S after one pass through the data matrix.

The search window is centerd at the point S(i,j) = (17,20).
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Clusters B,C, and D have the smallest displacements between their seed (first
guess) and final centroid. Clusters A and E are more spread out with the four
northwesternmost flashes assigned to cluster A being of positive polarity. A comparison
with the lightning density contour maps (Figures 33; 34) and the regional radar image at
2215 UTC (Figure 27) indicates good agreement between the 5 lightning centroids and
the largest thunderstorm echoes. The positive polarity flashes in the northwest quadrant
of cluster A are seen to be located in the trailing stratiform rain behind the main line of
thunderstorms.

Next, let the 5 single discharges of negative polarity serve as additional seeds
(f-j) and consider the impact on the preceding example (Figure 39). The distribution of
the 10 seeds splits apart cluster E into E, I, and J. Cluster A is split into clusters A and
F, where F is comprised entirely of the scattered positive polarity flashes in the trailing
stratiform rain. Cluster B is subdivided into clusters B and G and lastly, cluster H is
split off from cluster C. Comparison with the 2215 UTC radar image indicates that
cluster H is probably best represented by the solitary echo southeast of the main line of
thunderstorms. However, the remaining subdivisions appear less realistic.

The effect of changing cluster memberships is presented in Table 6. The original
cluster membership changes (and decreases) when the number of seeds increases from 5
to 10 seeds. Cluster D maintains the same total membership, but exchanges members
with clusters C and E. In addition, the within group sum of squares (WSS) decreases as
the number of seeds is increased.

Due to the natural spatial variability of the lightning strikes, a single flash within
a 100 km? grid is just as likely to have occurred in any of the bordering grids. Indeed,
ground-based radar and high altitude airplane lightning measurements of large weather
systems such as this have shown lightning flashes occasionally propagating over 100 km

horizontally before striking the earth (Ligda, 1956; Goodman et al., 1988c).
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Trackin ds and Cluster

The eastward propagation of the lightning activity can be followed over the three
subsequent 5-min periods 2220-2225 UTC (Figure 40), 2225-2230 UTC (Figure 41), and
2230-2235 UTC (Figure 42). In each case a threshold seed density of 0.02 flashes km™2
is employed to identify the clusters. The seed and cluster letter identifiers are newly as-
signed each 5-min sample period in the order the seeds are identified. Thus, the assign-
ment follows the search direction from upper left to lower right within the seed matrix
S.

Cluster A beginning at 2215 UTC can be tracked from the continuity between
5-min observation periods from 2215-2230 UTC as A-A-A-A. Since no local seed is
identified at 2230 UTC, the singular A event near the coordinate (70,120) in Figure 42
is misclassified as a member of the cluster to its south, rather than to the decaying
northern storm. Cluster B beginning at 2215 UTC can be tracked as B-(B+C)-B-A. The
tornadic storm cluster can be tracked as C-(D+E)-C-C. The two clusters initially iden-
tified at 2215 UTC as B and C are each split apart into two distinct groups at 2220 UTC
before merging again. The additional lightning clusters at 2220 UTC makes subsequent
tracking of all but the largest storms difficult. However, such storms also produce a
greater number of discharges and hence pose the greatest threat. Isolated storms, large
or small, tend to maintain their identity. Storms that merge and split apart cause iden-
tification problems for the radar echo tracking techniques as well.

An approach that might be considered for reducing the number of clusters to
only those that are coherent (i.e., trackable) from sample to sample is to make use of a
hybrid scheme using multiple methods. One possible hybrid approach has been applied
to this problem. The K-means algorithm is run initially as before, but then a variation
of the joining algorithm is used to reduce the number of clusters to the same number

identified in the prior sampling interval. The final number of clusters desired can be
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based on having a manageable number of entities to track, correspondence with radar
measurements, or perhaps based on some criteria such as desired storm size (by setting a
minimum areal extent threshold). The result is shown in Figure 43 for the period
2220-2225 UTC. The hybrid implementation involves finding the mean (x,y) coordinate
of the two nearest clusters to be paired until the total number of seeds is reduced from
the original set of 9 seeds (refer to Figure 40) to a revised set of 5 seeds. Table 7 lists
the results of changing the the number of seeds. When clusters D and E are joined, the
seed location of cluster E is used instead of a mean location for the pair because of the
greater seed density and greater number of members assigned to E in the first applica-
tion of the K-means algorithm.

Alternatively, the grid cell dimension could be increased to 20 km x 20 km or
greater to allow greater seed densities and fewer seeds, but this approach will reduce the
accuracy of the seed locations and the ability to resolve small storms as individual en-
tities. We have found that it is better to generate more seeds and iteratively join the
clusters than to generate too few seeds and be unable to resolve new cells that may
produce low flash rates or identify decaying storms which produce scattered discharges.
The Huntsville, AL tornadic storm, for example, produces a flash density of 1 discharge
per 100 km? earlier in its life-cycle. Other alternative approaches using only lightning
data, considered to be beyond the scope of this study, would be 1) to set a threshold on
the seed density or total cluster membership at some level greater than 0.02 flashes km™2
that might be considered to be physically meaningful, or 2) define a maximum search
radius, say 20 km, which would be the maximum distance a flash could be from a seed
point for consideration as a cluster member.

Figure 44 shows 30-min seed tracks (representing the gridpoint with the largest
local flash density) from 2200-2230 UTC for the clusters identified at 2215 UTC as
A-E. The lower case letters identify only the 5-min periods when the seed value is

greater than the 0.02 flashes km~2 threshold. The upper case letters indicate the location

89



i 1T & 7T LI i 171 LR L L i LI '
230 4
i
}— -
5 -
1
1
180 :
i i
- | i 7
i !
- 1 ; -
L A ! |
i i
- ] -
130
] L] .
- P )
- o " oA i
CHE ]
£ | s @ ]
it "
(3]
g o K ]
g | | s B s i
A % ]
[} B | 1
]
> | [ 4
i
B s .
]
8
3¢
R L & J
¢ c
= 'c c 1 -
} Ce el
|
b ! : .c —
R | i P
: o 5 |
-20 ‘ DD L :
- | -y
L c ]
- e ® | 1
= : i i
L . ; ] 4
: i
-T9 + :
l | I S | l 1 1 t | | S I | l i1 1 1 i S I | | | I |
~180 -130 -8 -30 20 T 180

X-Distance (km)

Figure 43. Hybrid clustering algorithm assignments during the period 2220-2225 UTC.
j wer letters (3-e) = cluster seeds with: values greater than 0.02
discharges km™*,



ovel, -l (1'16- ‘2°0L1-) £ (ov-‘001-) |
(Z169) (a1) (0°2y-'9'26°) (se- ‘08°) .
9901 oL (zse-‘2z ) 2 (og- ‘09-) 9
zoet vi (e'g2- '9'eyr) £ (oe- ‘ov-) H
(€0€9) (22) (vze-'12e-) (s2- ‘og-)
¥261 / (g'2¢- ‘922 S (02- ‘02-) 4
€201 el (52'29) L (0'0) 3
(@2v) (81) (2'9'80") (0'0)
(8 S (8'st ‘v'02-) 2 (01 ‘02-) a
68 €l (8vy'g1t) 9 (ov ‘o1) 0
(ogeo) (eg) (225'0°11) (05 °s) ,
¥992 12 (099 ‘1 1Y) 9 (09 ‘0) 8
83LLL  1€0LL 02 6 (9v01°'2'68)  (L'SOL 'S°OF) § (06°0v)  (06'0v) v
(s) (6) (s) (6) (s) (6) 6) (s) (6)
(guni) (wny) ( 2w 201 X) () 1 ISy
SSM SIaquiapy (K ‘x) s018N1D Kisuaq pass (A *x) paag

D1N $22Z-022ZZ e wyiiiod|y Buudsn) pqAH L 2IqElL

91



| LA B L L L L L B B B
238 ——es : ] - :
' |
- ! .
LB [ e e ]
!
- I -
| i H
I
! | B
L ‘ |
| ! ;
- ‘ | | P
| i ! |
13¢ : ! :
i i !
- v } : -
i i
L 1 ! - i
| |
— H ;
g . -
!
x |
b i . -
[ +] i t
Q ; | !
=1 L1 i
o i 3
Rl
2 B i Co
| i
;
Qu o ‘ b .
> |
- | b B R
i |
- ! h -d
! | i
;
* | | |
- : | oA
| r | ‘
- ! c 87y ¢ ,j J E
? ! T ' , !
- H : D ‘1 ) -
-20 |~ — - - o —d o :
[ | i
o : - E d | s
i : 1 i
L ; i P
| ;
L | _—
H I
L ‘ : |
-7¢ — — :
Loy | IR NS A [ b |
-180 -130 - -3 20 70 12¢

X-Distance (km)

Figure 44. Seed tracks during the period 2200-2230 UTC. Lower case letters (a-e)
= seed position for each 5-min interval that the seed value exceeds a threshold

of 0.02 discharges km™2, Ubper case letters (A-E) = seed seed location at

2215 UTC; T = Position of tornadic storm echo at 2200, 2215 and 2230 UTC.
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of the seeds at 2215 UTC and the location of the tornadic storm echo at 2200 UTC,
2215 UTC, and 2230 UTC. All clusters are generally moving from west to east, with
lightning cluster C within 1-gridpoint of the storm echo. However, only seeds B and D
are greater than the threshold value during each 5-min interval. The track variations
suggest a moving or weighted average of past tracks be used instead of updating the
track with each observation. Such techniques are also employed in the radar echo track-

ers described earlier.

Synergism With Radar

A primary objective of using a clustering algorithm for pattern recognition is to
allow the identification and tracking of storms and their changing membership using the
lightning data alone. However, the previous intercomparisons between the lightning
clusters and the radar echoes suggest that a fusion of the data sources would be useful.
For example, the radar echo trackers could provide seeds for clustering the lightning.
Consider the tornadic storm at 2135 UTC when the maximum flash density is only 1
flash per gridpoint. Using a seed threshold of 0.01 flashes km™2 produces 21 total
clusters and permits a separate cluster of two flashes, labeled T, for the tornadic storm
(Figure 45). Using a seed threshold of 0.02 flashes km™2 causes the two lightning flashes
to be assigned to cluster C.

On the other hand, the size and intensity criteria used in radar echo tracking
could be given adaptive thresholds to capture small, electrically active storms that do not
meet the default threshold criteria. In a study of the effect of radar echo size and
asymmetry on the identification of small, electrically active microbursts occurring in
Alabama and Florida, Buechler and Goodman (1990) find that the operational NEXRAD
storm identification algorithms have a probability of detection less than 0.5. The algo-

rithms are designed to detect large severe storms. Small storms (less than 5 km in
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diameter), changing echo shapes, and mergers sometimes cause the radar echo trackers to
lose (fail to identify) a storm from one 5-min scan period to the next. The continued
occurrence of lightning could thus be used to alert the echo tracker to adjust threshold.
A comparison of the different lightning clusters produced from radar echo seeds
follows. The NEXRAD storm identification and tracking algorithm (Bjerkaas and For-
syth, 1980) is implemented with S-band radar data collected on 13 July 1986 at 2328
UTC by the CP2 radar. The tracking algorithm yields two echo centroids, labeled A and
B, for this multi-cellular complex of storms (Figure 46). A smaller length threshold (5
km) and intensity threshold (30 dBZ) could produce more than two distinct storms. A
peak reflectivity tracker (e.g., Crane, 1979; Rosenfeld, 1987) would produce at least four
echo centroids, indicated by the shaded area representing reflectivity values in excess of
55 dBZ. The 3-dimensional structure of these storms is portrayed in Figure 47. The
lightning seeding algorithm (with its 10 km grid) would produce only a single seed lo-
cated between the points (36,115) and (46,125) depending on the placement of the grid.
In this isolated storm example, a joining-type clustering algorithm could be used instead
to assign the 28 lightning flashes to possibly four distinct lightning clusters. The lightn-
ing locations in Figures 48 and 49 suggest four storm clusters offset ahead of the peak
reflectivity maxima. The offset is partially physical in that the lightning strikes
generally occur outside of the storm reflectivity core, but there also appears to be a
directional bias to the southeast of the echo centroids, likely due to unrecovered sys-
tematic errors at one or more of the antennas. This initial examination of the perfor-
mance and limitations of lightning clustering algorithms demonstrates their usefulness in
identifying and tracking thunderstorms. In addition, it appears that more than one
method and stopping criteria is best suited to the various space and time scales examined

here.
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CP2 radar on 13 July 1986 at 2328 UTC. Circled upper case letters (A,B) =

two storm centroids identified by the NEXRAD storm identification and
tracking algorithm; solid contour = reflectivity > 40 dBZ; shaded region =

reflectivity > 55 dBZ. Distance units in kilometers from CP2.
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CHAPTER V.

THUNDERSTORM LIFE-CYCLES AND EXTRAPOLATION FORECASTING

Testing and Evaluation of the Logistic Growth Model

The storm identification and tracking process using clustering methods sets the
stage for assessing the validity of the logistic growth model and predictability of lightn-
ing activity during the storm life-cycle. Table 8 gives the model parameters for a
selected number of cases. A total of 14 storm systems have been examined ranging in
size from small, short-lived air mass storms (< 1 h duration) to large, long-lived mesos-
cale convective systems. The total (intracloud and cloud-to-ground) lightning life-cycle
has been computed for 3 of the short-lived storms. These latter cases are included to
demonstrate the applicability of the logistic model to storms for which the total lightning
rates portray the growth and decay process, yet the storm may produce too few discrete
cloud-to-ground flashes to establish a trend (e.g., the 20 July case). The cloud-to-
ground lightning data were summed over 1, 5, 10, 30 and 60 min sampling intervals
depending on the availability of data or the duration of the storm life-cycle. The SAS
(1985) non-linear regression procedure NLIN using the Gauss-Newton method was used
to estimate the parameters 8 and k from each set of observations and limiting values of a

corresponding to the total number of lightning flashes produced by each storm event.

Isolated and Multicellular Storms

Figure 50 shows the evolution of the cloud-to-ground lightning activity as-
sociated with 3 distinct storms observed in Southern Tennessee on 17 July 1986. The

storms were identified from the cluster analysis during the interval 1605-1845 UTC
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(1105-1345 CDT). The maps were produced every 10 min from 1605-1735 UTC, a
period which encompasses the entire 90 min life-cycle of cell A. The corresponding
radar echo time history is summarized in Figure 51 from 30 min observations made with
the Nashville, TN radar. The center coordinate of each radar map is approximately 6
km east and 9 km north of the FL2 radar (used as the center of the lightning maps).

The lightning and rainflux time series for storms A and C are shown in Figure
52. Cell A undergoes a secondary surge in lightning activity after an initial peak. The
rainflux time history also shows two peaks, each lagging the lightning maxima by 10
min. Cell C shows a single maxima in both lightning activity and rainflux.

The logistic model regression (P), observed flash rate (A), and residual error (A-
P), for storms A and C are plotted in Figures 53 and 54. The model fit is excellent in
both cases with correlation coefficient r > 0.998. Cell A produced 102 ground discharges
(the observed a) and Cell C produced 453 ground discharges during its 120 min life-
cycle. The steepness of the curves along the time axis are described by the parameter k.
For storm lifetimes of 1-2 h (sampled at 10 min intervals), the median value of k (Table

8) is approximately 0.8.

Total Lightning Activity for Airmass Storms

The value of k increases to 0.9 for storms with lifetimes less than about 1 h.
Figure 55 shows the logistic model results for the total lightning produced by the 20 July
airmass storm described in Chapter 2. Due to the short-lived 13 min duration of the
lightning activity a more frequent sampling period of 1 min was chosen. Again, the
residual error is only a few percent. The other two storms occurred in Florida in 1977
and 1978 (Figure 56), and have been studied previously by Piepgrass et al. (1982) and
Krehbiel (1986). The 11 July 1978 single peak storm is similar to the 20 July storm, but

the secondary peak of the 8 August storm is likened more to Storm A on 17 July 1986.
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Figure 53. Logistic model regression and residual error for 17 July 1986 Storm A.
Top: For each 10 min observation period, A = the observed flash rate;
P = model prediction. Bottom: Residual error = (A - P).
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Figure 54. Logistic fnodel regression and residual error for 17 July 1986 Storm C.
Top: For each }0 min observation period, A = the observed flash rate;
P = model prediction. Bottom: Residual error = (A - P).
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Figure 55. Logistic model regression and residual error for 20 July 1986 airmass
storm. Top: For each 10 min observation period, A = the observed flash rate;
P = model prediction. Bottom: Residual error = (A - P).
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Figure 56. Total lightning time series (discharges per 5 min) for two thunderstorms
observed near Cape Canaveral, Florida.

109



In the latter case the total system life-cycle is nearly symmetric within the envelope en-
compassing the storm, but the large individual peaks indicate 2 or 3 embedded cells or

resurgent growth and decay. Few ground discharges were observed in all three cases.

Long-lived Storm Complexes

Figure 57 depicts the life-cycle of the 15 November 1989 mesoscale weather sys-
tem through much of its life-cycle. The time series covers the period 1600 UTC 15
November to 0100 UTC 16 November in 10 min increments. Despite the multiple peaks
superimposed upon the curve (due primarily to cell mergers), the envelope of the lightn-
ing activity exhibits symmetry about the maxima of 360 flashes which occurs at time
period 27 (2030-2040 UTC). There are 19 time steps between 100 flashes and the maxi-
mum during the growth phase and 17 time steps from the maximum to 100 flashes
during the decay phase. This 2 time step difference is just 20 min over a2 6 h period.

The logistic growth curve in Figure 58 again fits the data well, thus reinforcing
the concept of symmetric growth and decay at yet larger space and time scales. The
long-lived (>2 h) storm systems have k values less than about 0.4, with k inversely
proportional to storm lifetime (Table 8). Using the symmetry that characterizes logistic.
growth, we can estimate that the duration of the decay phase will approximately equal
the duration of the growth phase. This estimate also defines the valid extrapolation
period for yes/no (presence/absence of lightning activity) forecasts. Forecasts of the
duration of these large storms are valuable because their long lifetimes and severe
weather production makes them the most disruptive and hazardous weather systems
during the Spring and Summer.

Figure 59 shows ten individual lightning ground strike time histories and a com-
posite life-cycle for convective storm complexes observed in the Oklahoma/Kansas

region of the Southern Great Plains with the NSSL ground strike network (Goodman and
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MacGorman, 1986). The life-cycle is identified from the infrared cloud temperature
criteria developed by Maddox (1980). The dimension of the cold cloud top observed by
satellite is used to define four phases of the storm system life-cycle. These phases iden-
tify the formation of the first storms (F), the initial time at which the size criteria
threshold is reached (I), maximum extent of the cloud shield (M), and the final time at
which the size threshold is exceeded (T).

In Figure 60 the composite life-cycle has been normalized to the maximum
hourly flash rate and to the time at which it occurred. The flash rates increase and
decrease exponentially with time. The exponential relations best fitting the data are also
shown where N is the fraction of discharges in a given hour occurring at a time, t, rela-
tive to the magnitude and occurrence of the peak. The logistic model fit to the com-

posite is given in Figure 61.

Interpretation of Results

In general, the longer a convective storm takes to reach its maximum intensity,
the longer it takes to decay. A storm cell that grows rapidly often decays rapidly. The
logistic model provides a good fit to the observed data. In each case the model residual
error is only a few percent for individual time series of cloud-to-ground lightning and
total lightning activity. The rate constant k is greatest for the shorter-lived storms (refer
to Table 8). The limiting value, a, is a function of storm duration and the environmen-
tal factors that serve to sustain strong convection (e.g., atmospheric instability, a mois-
ture source, and a triggering mechanism such as an upper level jet streak, front, storm
merger, or outflow boundary). The limiting value a and residual error will now be con-

sidered in greater detail.
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Figure 60. Average hourly cloud-to-ground discharge rates are normalized to the
average peak flash rate of MCCs and are shown relative to the time of occurrence
of the peak. N is the percentage of the peak rate at a given hour and R? is the
correlation coefficient for each of the exponential curves. QOpen circles, denote
the time and magnitude of the lightning rates for each of the MCC life-cycle
phases F, I, M, T (After Goodman and MacGorman, 1986).
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Figure 61. Logistic model regression and residual error for MCC composite
life-cycle. Top: For each hourly observation period, A = the observed flash rate;
P = model prediction. Bottom: Residual error = (A - P).
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Role of the Environment in Limiting a

One frequently used index to describe the instability of the storm environment is
the lifted index. The lifted index (°C) is found by lifting a positively buoyant saturated
parcel of air, having the thermodynamic characteristics of the lowest 100 mb layer of
the atmosphere, from its level of free convection (where the buoyancy is first positive)
to 500 mb. The temperature excess of the parcel, T , to that of the environment, T, at
500 mb is the lifted index in °C. Figure 62 shows the relationship between maximum
hourly flash rate during June 1986 within the 8 state area shown in Figure 29 and the
1200 UTC lifted index computed from soundings made at Redstone Arsenal, AL. Total
flash rates are seen to increase non-linearly with decreasing atmospheric stability.

A related parameter that describes the environment and offers additional physical
insight is the convective available potential energy (CAPE). CAPE is proportional to the
square of the maximum parcel updraft speed, w2, and thus represents the increase in
kinetic energy of a parcel associated with its vertical acceleration (Weisman and Klemp,
1982). CAPE is also commonly referred to as the available buoyant energy, i.e., the
kinetic energy due to buoyancy. Figures 63 and 64 show, respectively, the relationship
between 1) total cloud-to-ground lightning and CAPE; and 2) maximum rain rate and
maximum parcel energy (CAPE as defined by Zawadzki et al., 1981). Both cloud-to-
ground lightning (r=0.62) and rainfall (r=0.79) are positively correlated with the buoyant
energy in the environment. It should be noted that the predicted value of w ignores the
effects of precipitation (or mass) loading, vertical pressure gradient perturbations, and
mixing which would lower w estimates by as much as 50%. Yet, it is suspected that the
total lightning rates would produce an even greater correlation. Such measurements will
not be possible for large storm systems until total lightning observations are available

from space in the late 1990s with NASAs lightning mapping sensors (see Chapter .
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“igure 63. Regression plot of total cloud-to-ground flashes observed each day (v)
is a function of Convective Available Potential Energy (CAPE) (x) computed from
‘he Redstone Arsenal 1200 UTC soundings taken during June and July 1986.

The 95 percent confidence limits are indicated by the dotted lines.
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An Examination of the Residual Errors

Although we claim the logistic model describes the thunderstorm life-cycle
reasonably well, there may be other non-linear models that describe the life-cycle just as
well, if not better. The logistic model offers a high degree of correlation with the ob-
served data and errors are small, but we note that the residuals are consistently above or
below the fitted values for short periods. Such patterns suggest positive autocorrelation
in the error terms. Such correlation patterns further suggest improved models can be
constructed by adding one or more independent variables to the present model. We can
evaluate the error terms quantitatively with the Durbin-Watson test statistic (Neter et al,,

1983). The test statistic, D, is defined as

D~ — (5.1)

where n is the number of sample periods, e, is the residual error from the least squares
regression, T et2 is the residual sum of squares, and the term (e, - e, ,) is the difference

in the residuals at two successive times. The usual hypothesis test alternatives are

H :p= 0
(5.2)
H1 :p>0,
where p is the autocorrelation parameter. The decision rule is as follows:
If D> dU, conclude H ,
(5.3)

If D< dL, conclude Hp
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where d;; and d, are the upper and lower bounds obtained by Watson and Durbin, such
that a value of D outside these bounds leads to a decision and any d, < D < d gives an
inconclusive result.

Estimating the two parameters 8 and k (a is proscribed), results in dL-l.34 and
dy=1.42 at a level of significance a =0.01 (Table A-6 in Neter et al., 1983). For ex-
ample, the 15 November 1989 storm system has n=53 and a value of D=0.06 << d,.
Thus, one concludes the error terms are positively correlated. For the MCC composite
n=18, d,=0.90, and d,=1.12, D=0.84 < d;, and again conclude H,. Small values of D
usually lead to the conclusion that p>0 because successive error terms tend to be of the
same magnitude. The residual errors tend be largest when cells merge or cells
redevelop/intensify, both factors which lead to a short term increase in the observed
flash rates. The 15 November 1989 case shows a number of such peaks associated with
cell mergers. Much of this variation is reduced in the MCC composite by averaging the
ten cases. These smaller scale interactions can be included in the basic logistic model by

the inclusion of additional (e.g., exponential) terms.

ion Ex lation For i

Thunderstorm Duration

The relationship between the environmental instability and energy can be used as
a "first guess” of a. The storm system duration will increase and the system growth rate
will decrease as a increases Thus, a can serve as an index to provide some insight into
the potential life-cycle of the storms to the forecaster. Since the logistic curve is sym-
metric about its inflection point, knowledge of when a storm or storm complex has
begun the decay phase of its life-cycle (as indicated by decreasing lightning discharge

rates) can be used to estimate the valid extrapolation range. One might also predict that
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lightning activity will decrease exponentially in the same time it took to reach its peak.
This type of information can be used in the context of yes/no (lightning/no lightning)
forecasts. The existing extrapolation forecasting procedures use an arbitrary forecast
period determined by some ad-hoc method. Using an appropriate storm or system mo-
tion vector, one now has a physical basis and empirical evidence upon which to make

the determination of longer or shorter extrapolations.

Thunderstorm Existence

Consider the yes/no forecast of lightning activity for the 15 November 1989
storm system using the lightning grids. A total of 1269 cloud-to-ground flashes oc-
curred in association with the line of storms that came through the Tennessee Valley
during the 1 h interval 2130-2235 UTC within the analysis sub-region shown in Figure
33. The time series (in 5-min intervals) over this 1 h period is shown in Figure 65.

A full intensity extrapolation forecast would simply move the lightning in one
map with the storm motion vector At (5-min) steps forward. If the storm motion vector
placed the system and individual embedded storms in the correct location t+At step
ahead, the existence question would be answered correctly.

Since the total cloud-to-ground lightning for the system is changing (growth and
decay), the forecast error will depend on the number of steps ahead to forecast. For ex-
ample, the system motion vector of the lightning from 2130-2135 UTC to the next
5_min interval is 4.8 km from the southwest at 246° (due north is 0°). An extrapolation

of the pattern t+At steps ahead is simply

= x_ + nAt(Ax) (5.4)

4

=y, ¢+ nAt(Ay) (5.5)

« >
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where n is the number of sample periods ahead, and Ax and Ay are the x and y com-
ponents of the storm motion vector. The displacement of each lightning discharge is
computed first and then a grid is generated at the desired time. Consider the lightning
activity at 2130-2135 UTC which is extrapolated in space 11 periods ahead (Figure 66).
Compare this forecast grid against the observed grid at 2225-2230 UTC (Figure 67). A
qualitative evaluation of the forecast can be made using the evaluation criteria developed
by Donaldson et al. (1975) and successfully used by Browning et al. (1982) and many
others for evaluating radar echo extrapolations. The scoring criteria for lightning are
given in Table 9. The evaluation criteria of interest are the Threat Score or Critical

Success Index (CSI), probability of detection (POD), and false alarm rate (FAR) defined

as
A
CcSI = —— (5.6)
(A+B+C)
A
POD = — (5.7)
(A+B)
C
FAR = . (5.8)
(A+C)

A is defined as the number of gridpoints predicted to have a flash density >0.02
km-2 at the valid forecast time (t+At) and an observed density of 0.01 km™2 or greater
within a local neighborhood of the gridpoint. A 3x3 point verification grid centered at
the gridpoint of interest is used for this purpose. B is defined as the number of grid-
points where there is no flash density >0.02 km2 predicted at the valid forecast time,
yet there is a gridpoint observed in its neighborhood with a density >0.02 km-2. Lastly,

C is defined as the number of gridpoints predicted to have a flash density >0.02 km2,

yet no lightning is observed in the local neighborhood. The validation focuses on hitting
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Figure 66. Eleven-period ahead extrapolation (valid 2225-2230 UTC) of lightning
activity observed during the period 2130-2135 UTC.
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Figure 67. Observed lightning activity during the period 2225-2230 UTC.
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Table 9. Objective Forecast Scoring Criteria

Observed Forecast
Lightning No Lightning
Lightning A B
No Lightning C D
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or missing the major storm centers and the validation area is similar to that of Browning
et al. (1982) who used 20 km x 20 km grids to validate their rain/no rain extrapolation
forecasts.

The 11 period ahead forecast produced a CSI=0.46, POD=0.71, and FAR=0.43.
The residual error e,=3 for forecasting the number of seeds or clusters. A total of 8
seeds were identified at 2130-2135 UTC (forecast to still be extant at 2225-2230 UTC
since the full system was moved forward in time) and only 5 seeds are observed (refer to
Chapter 4). The loss of storms most severely reduces the CSI and FAR since we assume
the storm clusters will still be present nearly an hour later. Due to the birth and death
process, the CSI and FAR tend to improve with decreasing lag. We note that the lightn-
ing cluster identified as I (Figure 45) has long since dissipated (2140 UTC), yet it is the
forecast valid at 2225-2230 UTC.

Lastly, consider the |-period ahead extrapolation of the lightning activity from
(2225-2230 UTC) to (2230-2235 UTC) (Figure 68) and compare this grid with the ob-
served lightning grid at (2230-2235 UTC) (Figure 69). We find the CSI=0.67, POD=0.71,
the FAR=0.08, and the number of clusters increases from 5 to 6. In this example the
FAR is greatly reduced with a lesser improvement in the CSI. Although we generally
expect better forecasts at shorter lags, a number of varied weather scenarios need to be

studied to understand ways to improve the forecast scores.
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Figure 68. One-period ahead extrapolation (valid 2230-2235 UTC) of lightning
activity observed during the period 2225-2230 UTC.
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Figure 69. Observed lightning activity during the period 2230-2235 UTC.
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CHAPTER VL

SUMMARY AND CONCLUSIONS

The goal of this research was to develop a mechanistic model that can be used
for extrapolative forecasting of lightning and thunderstorm activity. The original
research reported herein has resulted in the development of a 3 .parameter logistic
growth model to explain the exponential growth and decay of lightning activity accom-
panying thunderstorms, at different space and time scales extending over four orders of
magnitude. The logistic model depicts a process where the growth rate is proportional to
the size reached, the remaining size of the population, and is a function of time. The
growth rate constant depends on the size of the storm while the limiting value of the to-
tal lightning activity and lifetime is related to the available energy in the environment.

Short-lived storms may not produce sufficient cloud-to-ground lightning dis-
charges to exhibit a continuous growth and decay life-cycle. Instead, the total
(intracloud and ground) discharge rate best describes the thunderstorm life-cycle. In
two severe weather cases, a short-lived microburst-producing storm and a long-lived

tornadic supercell storm, peak total lightning rates were greater than 22 flashes min}

1

and 40 flashes min™", respectively. Yet cloud-to-ground flashes occurred at rates of

1 The logistic growth model using cloud-to-ground lightning data is more

only 1-5 min~
appropriate for describing the evolution of storm complexes, where the longer sampling
period is less affected by sudden surges in growth. The short-lived cells produce too

few samples (ground discharges) to adequately describe the system and detect significant

trends.
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The model residual errors, though small, have been shown to exhibit positive
serial correlation. This is a result of the merger and reinvigoration of storms giving rise
to multiple local maxima in the lightning time series during the growth and decay of the
storm system. Suggested techniques for resolving or deconvolving these multiple peaks
to gain further insight into their behavior (and implications for nowcasting) might in-
clude other non-linear models with additional parameters, stochastic time series models
(Box and Jenkins, 1976; Abraham and Ledoiter, 1983), and simple first-order difference
equation formulations of the logistic model that are used to describe the chaotic behavior
of non-linear dynamical systems. The predator-prey relationships in animal and biologi-
cal populations have been modeled in this way (May, 1974; May 1976).

Many of the physical (non-instrumental) sources of forecast error examined have
the same root causes that affect the radar echo extrapolation systems, i.e., incorrect ex-
trapolation vectors, new storms (births), renewed growth (due to cell mergers or a
change in the storm environment, storm decay or total dissipation (deaths). The most
promising improvements to extrapolation forecasts should come from the use of ap-
propriate non-linear models to understand the birth and death process. It appears ap-
propriate to maintain a history on the life-cycle of the system when two or more storms
merge, and not, as current methods do, begin a new description from the time of the
merger. This will lead to incomplete life-cycle descriptions and delete the information
needed to predict the decay of storm complexes.

A novel constrained optimization approach was developed to remove systematic
errors from the cloud-to-ground lightning data base. An optimization algorithm con-
strained by the observed position of isolated radar echoes produces the best estimate of
the lightning locations for subsequent analysis. These lightning locations are next clus-
tered into groups that define single thunderstorm cells and storm complexes. This is ac-
complished by creating grids of lightning activity in 5-10 min intervals and finding iso-

lated lightning density maxima within the grids. These maxima, typically 2 flashes per

131



100 km?, are then used to determine the total number of storms and as seed (initial
guess) points for a K-Means nearest neighbor clustering algorithm that optimally assigns
the flashes to the proper storm. Subsequent groupings of the individual storms permitted
the identification of entire storm complexes. Uncorrected location errors will degrade
the process of objectively identifying and assigning the individual lightning strikes to
their parent thunderstorms These misclassifications, in turn, could alter the true nature
of the lightning life-cycle time series.

Lightning data offers synergistic information to the radar -tracking and cell iden-
tification algorithms in operational use. The NEXRAD radar storm identification tech-
niques rely on a base scan reflectivity threshold to identify storm cells. It has been
demonstrated that lightning strikes can be clustered into discrete cells, thus offering an
opportunity for augmenting the decision criteria that are based on the radar algorithms

alone.
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CHAPTER VIL

RECOMMENDATIONS

During the 1990s, the NEXRAD radars will provide storm coverage over the
conterminous United States (Figure 70). Figure 71 shows the radar coverage at a range
of 125 km with the track of the 15 November 1989 Huntsville, AL tornado superim-
posed. At 125 km, for example, the 1° NEXRAD radar beam is about 1 km in diameter
and the base-scan height (minimum elevation) is 1 km above the surface of the earth.
Note that the distance from the Nashville, TN and Birmingham, AL NEXRAD radars to
the tornado is 190 km. At this distance the beam width is 3.4 km. Such a broad sam-
pling volume will degrade the performance of the storm identification and tracking al-
gorithms, and the Doppler wind velocity estimates will be compromised. Yet, the
ground-based lightning network will provide overlapping coverage with the radar for
improved storm identification,

Finally, a lightning mapping sensor using CCD-focal plane technology will allow
total lightning activity to be monitored continuously from space (Christian et al., 1989).
This instrument is planned for the next genmeration of operational weather satellites
(called GOES-Next) and will provide coverage from Canada to Brazil (Figure 72). These
data will have a spatial resolution of 10 km, sufficient for the identification of in-
dividual thunderstorms. The satellite lightning data will not require the sensitive site er-
ror corrections required by the cloud-to-ground lightning networks. The clustering and

extrapolation forecasting methodologies are equally applicable to the data collected by
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Figure 70. NEXRAD network sites.
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NEXRAD COVER’H[JE AT 125 KM

Figure 71. NEXRAD sites in the Southeastern United States with 125 km range
circles. The track of the 15 November 1989 tornado at Huntsville, Alabama
is indicated by the cross and solid line.
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Figure 72. Proposed 10.5° field of view centerd at 2°N latitude and 75° longitude
for the lightning mapper sensor on GOES-Next.
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the lightning mapper. Sensor fusion with lightning data shouid provide more capability
for diagnosing the present and future weather situation than any one of these sensors can

possibly offer by itself.

137






APPENDIX A: THE FFIX ALGORITHM

Matl ical Formulation of the Best Point Esti (BPE)

FFIX is based on the result that if there are no bearing errors, then the target
vector T lies in each of the individual bearing planes and, therefore, is normal to the
normal vectors, Ni, to each of the bearing planes, i.e., T'Ni-O (Figure 73). The ob-
served bearing planes are defined by their respective bearing and station vectors as
measured from the center of the earth. The bearing vector, B;, gives the direction from
which the signal from the lightning strike is sensed at station S,. Due to the random and
systematic errors, the observed bearing planes do not generally contain a common target
vector, T. The true bearing to the target is represented by p;- Thus, we choose T such
that the dot products, T'N,, are a minimum. FFIX applies the method of weighted least

squares that minimizes the objective function
f(T) = w, (TN)? (A.1)

subject to the constraint |T| = 1. The choice of the weights, w,, is based on the prin-
ciple of maximum likelihood first examined by Stansfield (1947). This is equivalent to
minimizing

5, = T (/9 ), (A2)
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90°

Figure 73. Spherical triangle relationships used in the FFIX algorithm.
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where s, is the sum of squared bearing errors for a set of k bearings, ¢, is the difference
between the observed bearing and the bearing from station Si to the BPE and a; is the

range weighted bearing standard deviation for the ith station. That is,

o; = criDi, (A.3)

where o, is the standard deviation of the bearing errors and D, is the distance from DF
station S, to the BPE. For the first iteration when there is no BPE the weight for DF
station S, is simply

w, = (1/0)% (A.4)

Each successive iteration uses the previous BPE for its initial location estimate,
which in turn determines each of the Ds. Thus, DF stations having larger bearing er-
rors and at a further distance from the BPE will be given lesser weight. Define
T as a 3 x 1 column vector,

N as a n x 3 matrix of normals
W as a n x n diagonal matrix of weights.

If C is defined as C = NTWN, then the objective function (Eqn. A.l1) can be expressed
as

f(T) = TICT . (A.5)

For real data C will be positive definite, i.e., f(T) > 0 if T#O.
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Simolifving the Probl

First, TTCT = k is the equation of an ellipsoid for any k > 0. The problem is
simplified if we rotate the axes of the ellipsoid to get the equation in standard form (see
also Gething, 1978). Note that

T = Py (A.6)

is a rotation if

PTp a1, (A7)

where P is the matrix of rotation and I is the identity matrix. The required rotation

gives
TICT = yTPTC Py = yT A y, (A.8)
where
A = diagonal (A, },, Aj) . (A.9)
Thus,
£(T) = Ay7 + 2] + AgYs » (A.10)

0<A1<_/\2<_,\3.

The minimum value of f(T) is A for y = (1,0,0) or

T=Py=

v

1
21 |- (A.11)

The problem is reduced to determining A, and P. The multipliers A, must satisfy

the equation
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|C-a1] =0. (A.12)

Eqn. (A.12) is the characteristic polynomial of C and the minimum root A, can be found
directly without an iteration procedure. The solution vector T can now be computed
from the matrix equations C = Al and |T| = 1.

From the geometry in Figure 73 and the properties of the dot and cross products

we get

T'N, = cosa, (A.13)
|TSl| = sinp, . (A.14)
For the spherical triangle defined by the points Tani we get the relationship
cosa, = sinp, sine; . (A.15)
Therefore,
(T.Ni)z - coszai (A-l6)
2.2
= | T xS, |*sin’¢ .
From this result it follows that by defining
W, = (/5] TxS;|? (A.17)
the function
(sin® ¢/0,?) = E(¢/0; ) (A.18)

is minimized. The error introduced by the approximation sine, = ¢ is < 1% for ¢, = 14°,
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Th nfi 1

The confidence ellipse calculation is based on the perturbations (variance) of the
bearings to the BPE, i.e., bearing errors and target position errors are treated as dif-
ferentials (see Stansfield, 1947). Linearization of the functional relationship between the
BPE and observed bearings gives an approximate expression for the inverse covariance
matrix of T. Therefore, the bearings to the BPE are used, not the observed bearings.

Since both T and Si lie in the bearing plane, the normal vector can be calculated from

N, =(TxS)/|TxS]| . (A.19)

As before, C = NTWN, with the exception that now C has the value of zero for
an eigenvalue. Since TN, = 0, or in matrix terms, NT = 0 implying that CT = 0, the
equation

xTCx = k? (A.20)
can be rotated by x = Py to

YT Ay = Ay,2 + Ay = k2 (A.21)

where PTCP = A = diagonal (0,2,,24).

When the site errors have been removed, the random errors are normally dis-
tributed and the errors with respect to the lines of position (i.e., the BPE) are independ-
ent. Eqn. (A.21) represents an ellipse in the Y,Ys plane which is the plane tangent to the
earth at T. If x is the deviation from T, then x is normally distributed in a plane tan-
gent at T, and xTCx has the chi-square distribution with 2 degrees of freedom.

Given the probability (xz<_k2) = P for

k2 = -2 In (1-P), (A.22)
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the axes of the confidence ellipse for probability level P are given by

a = (Rk/v},) ; b = (Rk/vy) (A.23)

where a and b are the semi-major and semi-minor axes of the ellipse in units of km and
R = 6378 km is the radius of the earth. The major axis lies along the eigenvector e,
corresponding to Az, and the orthographic projection of e, onto the plane tangent to the
earth at T dgtermines the orientation of the confidence ellipse. If T = (t, t,, t,) and e, =

(al, a,, a;) and © is the bearing of the major axis, then

$in® = (t,a, - tzal)/\/tlz + tz2 . (A.29)

The ellipse represents a region of minimum area associated with a given proba-
bility that the lightning strike occurred on or within the ellipse perimeter. The values of
k2 for the 90% (P=0.9) and 50% (P=0.5) ellipses, respectively, are 4.61 and 1.39. (See

Gething, 1978 for more discussion on the confidence ellipse.)
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APPENDIX B: LIGHTNING ANALYSIS SOFTWARE

The lightning analysis software consists of programs to decode the hexadecimal
data archived on 1600 bpi magnetic tape, convert the data into geophysical quantities,

perform data quality control, remove site errors, compute the optimal flash position, and

compute error statistics.

PRECEDING PAGE BLANK NOT FILMED
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c
C

c
(o]
C
[
(o
[o
c

SUBROUTINE MAINO

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCree

LLP LIGHTNING DATA DECODER, USES THE DDAH TAPE FORMAT

(o]
CONVERTS RAW DATA TO PROPER UNITS , REMOVES SITE [+
ERRORS FOR THE MSFC NETWORK, CALLS FFIX FOR OPTIMAL C
LOCATION ESTIMATES WHEN 2 OR MORE DPS DETECT THE [
FLASH, CALLS NETFIX FOR TWO BEARING CUT SOLN (o4

[+

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee

3

c

C THESE VARIABLES ARE USED AS CONSTRAINTS IN ERSTAT FOR SITE ERRORS

INPLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION IDATA(128)
CHARACTER GDATE*S
CHARACTER*1 CR,LF,AT
CHARACTER*1 ICHAR1(512),ICHARZ2(46),ITMP(46)
CHARACTER*2 NBUF (256)
EQUIVALENCE (IBUF,ICHAR1), (ITMP(1),ICHAR2), (NBUF, IBUF)
EQUIVALENCE (IBUF,IBUF1)
COMMON/BUFS/IBUF1(128) , IBUFZ (128)
COMMON/COM1/IBFLAG, NREC, INCHK, IN(5) , IN2 (5)
COMMON/SOLN/SNKA, SSGNL, TLAT, TLON, RADIUS , AREA, TSOLN,
*IYDSN, IYR, MON, NDAY,NRS, NBR, IRES, NEVT, SMA, SMI , ORIEN
COMMON/DFSTUF/DFE1(128) ,NS1(128) ,DFR10(128) ,NS10(128),
*DFR15(128) ,NS15(128) ,SQ1(128),8Q10(128) ,SQ15(128)
COMMON/SUMRY/KTWOER, NTHRS ( ¢) , NBADF, NBDF2, NDUP(4) , NOVR(4) ,
*NDFHT (4) , KDVG
COMMON/KOUNTR/KNT1 , KNT2, KNT3 , KNT4 , KNTHH, MTKNT, IDFTST, ISECOD
COMMON/ECNST/TMX , RSML1 , RSML2 , RBIG, SBIG, BINSIZ
DATA CR,LF,AT/20D,Z25,2Z7C/
DATA KL1,KL2, ISTAT,MMNUM/26,46,0,8000/
CALL DATEG (GDATE)
CALL TIME (ITIME)

IHTIM=INT (ITIME/360000)}

AHTIM=FLOAT (ITIME)/360000.

AMTIM= (AHTIN-IHTIM) #60.

IMTIM=INT (AMTIM)

ASTIM=60.* (AMTIM-IMTINM)

STIM=FLOAT( (IHTIM*100 +IMTIM)#100) +ASTIM
WRITE(6,3) GDATE,STIM

FORMAT (1H1/20X, 'LLP QUALITY CONTROL ANALYSIS’//20X,’(’,A8,2X,

*Fl10.2,)’/)

IF NOT WANTING SITE ERRORS, SET IDFTST=0, AND ISECODw2

IDFTST=0
TMX=20.
RSML1=30.
RSML2=50.
RBIG=200.
SBIG=S.
BINSIZ=6.

C SITE ERROR CODES: O0=NONE, 1=SITERC,2=SITER2, 3=SITERR

56

66

C..

ISECOD=2
IOUNIT=10

DO 56 L=1,128
DFE1(L)=0.
NS1(L)=0
DFR10 (L) =0.
NS10(L)=0
DFR1S(L)=0.
NS15(L)=0.
SQ1(L)=0.
$Q10(L)=0.
SQ15(L)=0.

CONTINUE

DO 66 L=1,5

IN2(L)=0

IN(L)=0

INITIALIZE COUNTERS

KNT1=0

KNT2=0

KNT3=0

KNT4=0

NBADF=0

NEVT=0

KDVG=0

KTWOER=0
MTKNT=0
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DO 68 L=1,4
c NQC(L)=0
NDFHT (L) =0
NTHRS (L) =0
€8 CONTINUE
IBFLAG=0
LEN=512
INCHK=0
5 IF(ISTAT.EQ.1) CALL ERSUM
DO 5 IJK=1,MMNUM
WRITE(6,72) 1JK
72 FORMAT (1X/20X, ‘RECORD NO.= *,I6/)
IF(ISTAT.EQ.1) CALL ERSUM
CALL GETREC (LEN, ISTAT)
NSIZ=0
NEXT=1
DO 10 I=1,LEN
c IDATA(I)=IBUF(I)
c IPT=2+I
IPT=I
NSIZ=I-NEXT+1
c WRITE(6,11) I,NSIZ,NEXT,ICHARL(I),ICHAR1(I)
11 FORMAT (1X, /I,NSIZ,NEXT, ICHARL. .’ 3I4,A2,2X,22)
IF (ICHARL (I).EQ.LF.AND.NSIZ.EQ.KL1.AND. IBFLAG.EQ.0) THEN
CALL DFDATA (ICHAR1,IPT,IMES)
NEXT=I+1
IF(IMES.EQ.1) GOTO 10
c ELSE IF(ICHAR1 (NEXT).EQ.AT.AND.NSIZ.EQ.KL2)THEN
c CALL PADATA (ICHAR1,IPT)

anona

c NEXT=I+1
ENDIF
IF (ICHAR1(I) .EQ.LF.AND.NSIZ.NE.KL1.AND. IBFLAG. EQ. 0) THEN
c WRITE(6,49) I,NSIZ,NEXT,ICHAR1(I),ICHAR1(I)
49 FORMAT (1X,’....I,NSIZ, NEXT,ICHAR1..’,3I3,A2,2X,22)
NEXT=I+1
GO TO 10
ENDIF

SORTING AND SAVING DATA FROM NEXT BUFFER TO COMPLETE
A PARTIAL STRING

[eNeRe Nl

IF (IBFLAG.NE. Q) THEN
IBFLAG=IBFLAG+1
ISAVPT=2+*1BFLAG
ISAVPT=IBFLAG
ICHAR2 (IBFLAG)=ICHAR1(I)
[of WRITE(6,400) I,IPT,NSIZ,IBFLAG, ICHAR2 (IBFLAG) , ICHAR2 (IBFLAG)
400 FORMAT (1X, ' ** I1,IPT,NSIZ,IB,ICHAR2()’ ,414,A2,2X,22)
ENDIF
IF(ICHAR2 (IBFLAG) .EQ.LF.AND. IBFLAG.EQ.KL1) THEN
CALL DFDATA (ICHAR2, ISAVPT, IMES)
NEXT=I+1
IF(IMES.EQ.1) GOTO 10
IBFLAG=0
ELSE IF(IBFLAG.EQ.KL2)THEN
ELSE IF(ICHAR2 (IBFLAG) .EQ.AT.AND.IBFLAG. EQ.KL2) THEN
CALL PADATA (ICHAR2, ISAVPT)
NEXT=I+1
IBFLAG=0
ENDIF
CONTINUE

(2]

[e X el

o

SAVE THE LAST DF OR PA PARTIAL DATA BLOCK FROM BUFFER I
TO COMPLETE THE CHARACTER STRING WHICH CONTINUES IN THE
NEXT BUFFER

ooy

1F (ICHAR1 (LEN) . NE. LF) THEN
K=1
DO 50 J=NEXT,LEN
IP(K.GT.KL2)THEN
WRITE (6,900)
900 FORMAT (//1X, 'NO LINE FEED AT END OF RECORD’)
GOTO 5
ENDIF
ITMP(K)=ICHAR1 (J)
50 K=K+1
c WRITE(6,500) NEXT,LEN,IBFLAG,K,ITMP(1),ITMP(K-1)
500 FORMAT (1X,’!! NEXT,LEN,IB,K,ITMPK, ITMPNXT',6414,2A2)
IBFLAG=LEN-NEXT+1
c ISAVPT=2+IBPLAG
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cs CONTINUE

GOTO S
[+ CALL ERSUM
c STOP

END

SUBROUTINE GETREC(LEN, ISTAT)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

[ [+
[« RETRIEVES A 512 BYTE (CHARACTER) RECORD FROM DISK [
C AND RETURNS TO MAINO o
c C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeee
ccC

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
EQUIVALENCE (IBUF,IBUF1)
COMMON/BUFS/IBUF1(128),IBUF2(128)
CHARACTER*20 DFFIL
INTEGER BFLN
BFLN=128
NREC=0
IBFLAG=0
READ(9,2,END=400) (IBUF1(IO),IO=1,128)
2 FORMAT (128A4)
NEXT=1
LAST=LEN
c WRITE(6,300) (IBUF1(IO),IO=1,128)
300 FORMAT(1X,32A4)
GOTO 500
400  ISTAT=1
500  RETURN
END
SUBROUTINE DFDATA(LINE,IPT)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCeee

c c
C UNPACKS AND DECODES RAW DF DATA(DDAH FORMAT) FROM TAPE C
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCeeCCCCCCeeee
c

IMPLICIT DOUBLE PRECISION(A-H,0~Z)
c LINE CONTAINS RAW DF DATA STRING W/ CRLF
c TMP CONTAINS SUBSTRINGS FOR SWAPPING MSB/ LSB

CHARACTER*1 LINE(512)
CHARACTER TMP*4

CHARACTER#1 OUTBUF (24)

CHARACTER#*24 IOBUF

CHARACTER*1 IAPOL

COMMON/BUFS/IBUF1(128) , IBUF2(128)
COMMON,/COM1/IBFLAG, NREC, INCHK, IN(5) , IN2(5)
COMMON/DFSTUF/DFE1 (128) ,NS1(128) ,DFR10(128) ,NS10(128),
*DFR15(128) ,NS15(128),5Q1(128),5Q10(128),SQ15(128)
COMMON/SOLN/SNKA , SSGNL, TLAT, TLON, RADIUS, AREA, TSOLN,

*IYDSN, IYR, MON,NDAY, NRS, NBR, IRES, NEVT, SMA, SMT , ORTEN
COMMON/SUMRY,/ KTWOER , NTHRS (4) , NBADF, NBDF2, NDUP(4) , NOVR(4) ,
*NDFHT (4) , KDVG
COMMON/KOUNTR/KNT1, KNT2, KNT3 , KNT4 , KNTHH, MTKNT, IDFTST, ISECOD
COMMON/ECNST/TMX , RSML1, RSML2 , RBIG, SBIG, BINSIZ

INTEGER IODF(24),DF1TST

INTEGER HX80

INTEGER*4 JD,JDAY, IYEAR

EQUIVALENCE (IBUF,IBUF1)

EQUIVALENCE (OUTBUF,IOBUF), (NCNT,NBR), (IERR, IRES)

DIMENSION IRS(4),IHH(4),IMM(4),ISS(4),IMS(4) , ATMP(4),IYYDDD(4)
DIMENSION POL(4),CBRG2(4),AZM(4) ,AMP(4),TM(4),CBRG1(4),A2M2(4)
DIMENSION ITRS (4),TAMP(4),B(4),IA(2),AB(2)

DIMENSION DLATI (4),DLONGI (4)

DATA DLATI/34.649167,35.399167,35.83750,34.716667/

DATA DLONGI/86.669167,86.076944,87.443889,87.881667/

DATA IST,MNODF/26,4/

DATA HX80/280/

DTR=0.01745329

EMISS1=-999.99

EBAD1=-888.88

ERAD1=6371.

ISTART=IPT-IST+1

IEND=IPT . N
c WRITE(6,200) ISTART,IPT, (LINE(IS), IS=ISTART, IEND) ORIGINAL FAGE IS

200 FORMAT (1X, ' ISTART, IPT’/,2I4,2X,26A4)
II=1 r . ’ L4 ’ OF POOR WAL;TY

J=ISTART
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WRITE DF STRING INTO OUTBUF FOR INTERNAL 1/0, SWAPPING MSB,LSB

aan

OUTBUF (1) =LINE (J)
OUTBUF (2) =LINE (J+1)
OUTBUF (3 ) =LINE (J+4)
OUTBUF (4 ) =LINE (J+5)
OUTBUF (5) =LINE (J+2)
OUTBUF (6) =LINE (J+3)
OUTBUF (7) =LINE (J+8)
OUTBUF (8) =LINE (J+9)
OUTBUF (9) =LINE (J+6)
QUTBUF (10) =LINE (J+7)
OUTBUF (11) =LINE (J+12)
OUTBUF (12) =LINE (J+13)
OUTBUF (13) =LINE (J+10)
OUTBUF (14) =LINE (J+11)
OUTBUF (15) =LINE (J+14)
OUTBUF (16) =LINE (J+15)
OUTBUF (17) =LINE (J+18)
OUTBUF (18 ) =LINE (J+19)
OUTBUF (19) =LINE (J+16)
OUTBUF (20) =LINE (J+17)
OUTBUF (21)=LINE(J+22)
OUTBUF (22) =LINE(J+23)
OUTBUF (23) =LINE (J+20)
OUTBUF (24)=LINE (J+21)
c
C.. CHECK FOR ILLEGAL CHARACTERS IN DF DATA STRING
c
IMES=0
DO 30 KC=1,24
1F (OUTBUF (KC) . LT. A’ .OR.OUTBUF (KC) .GT. ’9) THEN
WRITE(6,455) OUTBUF
455 FORMAT (5X, / BAD CHARACTER IN DF STRING = ’,24Al)
¢ WRITE(6,230) (IBUF1(IO),IO=1,128)
C230 FORMAT(1X,32A4)
IMES=1
RETURN

ENDIF

a0 CONTINUE
READ (UNIT=IOBUF, FMT=191) I01,I02,I03, 104,105,I06,107,1I08

191 FORMAT (Z2,24,24,24,22,24,22,22)

c WRITE(6,193) 101,I02,I03,I04,105,6106,107,108
c
C.. GET DF IDENTITY, IDF=IOl+1
c
IDF=IO1+1
IF(IDF.LT.1.0R.IDF.GT.MNODF)THEN
IQCKEY=~1
WRITE(6,553) OUTBUP
553 FORMAT(5X, / ILLEGAL DF ID NUMBER IN STRING = ’,24Al)
RETURN
ENDIP
c
C.. COUNT SUM OF EACH DF DETECTIONS
c

IF(IDF.LE.MNODF) NDFHT (IDF) =NDFHT (IDF) +1
C.. GET PLASH POLARITY HEXS0 ADDED TO BYTE 12 ON TAPE IF POSITIVE

POL(IDF)=-1.0
IF(IO07.GE.HX80) POL(IDF)=1.0

C.. GET AMPLITUDE, 1500 IS OVERANGE VALUE (DF SIGNAL SATURATION)

AMP (IDF)=POL(IDF) * (MOD(I07,HX80)*256. +FLOAT( 108))/10.
IF(ABS (AMP{IDF)).GE.1500.) THEN

NOVR (IDF)=NOVR(IDF)+1
o]
c WRITE(6,143) IDP,AMP(IDF)
€143 FORMAT (1X, ' DF OVERRANGE’,I4,F8.2)
RETURN
ENDIF

IF (ABS (AMP(IDF)).LT.10.) THEN
NTHRS (IDF) = NTHRS (IDF)+1
RETURN

ENDIF

c
C.. GET MINUTE OF THE DAY AND CONVERT TO HHMM FORMAT

c
THH (IDF)=INT(102/60)
IMM (IDF)=I02~60*IHH (IDF)

151




300

350

400
450

C..

193

55

196

230
[

GET MILLISECONDS OF THE MINUTE

ISS(IDF)=INT(I03/1000)
IMS (IDF)=103~1000*1SS(IDF)

GET TIME OF DAY HHMMSS FORMAT

TM(IDF)=FLOAT ( ( (IHH (IDF) *100) +IMM(IDF)) *100+ISS (IDF))
*+FLOAT (IMS (IDF))/1000.D00

GET THE YEAR

CDAY=I04+1
NYEAR=JDAY/365
LPYEAR=NYEAR/ 4
JD=LPYEAR+365+NYEAR
IF(IDAY-JD) 350,300,400
JDAY=365

KYEAR=LPYEAR*4

IF (KYEAR.EQ.NYEAR) JDAY=366
NYEAR=NYEAR-1

GOTO 450

NYEAR=NYEAR-1
LPYEAR=NYEAR/ 4
JD=LPYEAR+36S*NYEAR
JDAY=JDAY-JD

IF(JDAY.EQ.0) GOTO 300

GOTO 450

JDAY=JDAY-JD

JDAY=JDAY~1

GET YYDDU PORMAT FROM NYEAR AND JDAY
IYYDDD({IDF)=NYEAR*1000-+~JDAY
GET THE EQUIVALENT MONTH, DAY, AND YEAR

GET NUMBER RETURN STROKES
IRS (IDF)=I0%

GET UNCORRECTED DF AZINUTH TO PLASH
AZM(IDF)=(FLOAT (106)/65536.) *360.
FORMAT (1X, 'IODF /,818)

CHECK DF DATA FOR UNACCEPTABLE VALURS

IQCKEY=0
IF(IDF.LT.1.0R.IDF.GT.MNODF) THEN

IQCKEYw-1

WRITE(6,55) OUTBUF

FORMAT (5X, ’ BAD CHARACTER IN DF STRIHG = *,24A1)

RETURN
ENDIF
IF(IHH(IDF) .LT.0.OR.IHH(IDF).GT.24) IQCKEY=-1
IF(IMM(IDF).LT.0.0R.IMM(IDF).GT.60) IQCKEY=-1
IF(ISS(IDF).LT.0.0R.ISS(IDF).GT.60) IQCKEY=-1
IF(IMS(IDF).LT.0.0R.IMS(IDF).GT.1000) IQCKEY=-]

IF(IYYDDD(IDF).LT.83000.0R.IYYDDD(IDF).GT. 90000) IQCKEY=-1

IF(IRS(IDF).LT.0.OR.IRS(IDF).GT.14) IQCKEYm-~1
IF(AZM(IDF).LT.0..OR.AZM(IDF).GT.360.) IQCKEY=-1

IF DATA UNACCEPTABLE DO NOT CONTINUE WITH STRING PROCESSING

IF(IQCKEY.EQ.~1)THEN
NQC (IDF)=NQC(IDF)+1

WRITE(6,196) IQCKEY,IDF,IHH(IDF),IMM(IDF),ISS(IDF) ,IMS(IDF),
* TM(IDF),IYYDDD(IDF),IRS (IDF),AZM(IDF), POL(IDF) +AMP (IDF)
FORMAT (1X,*$196 DF DATA ’,I2,’ DF= ’,12,2X,312,13,4X,F10.3,

* 16,14,F10.4,F6.1,F8.2/)
WRITE(6,230) (IBUF1(I0),IO=1,128)
FORMAT (1X, 32A4)

STOP
RETURN
ENDIF
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C¢.. GET A CORRECTED BEARING ANGLE FOR THIS DF

c
IF (AZM(IDF) .EQ.O..AND. IDFTST.EQ. IDF) THEN
WRITE(6,188) IDP,AZM(IDF),TM(IDF),AMP(IDF)
188 FORMAT (1X, / ZERO DEGR. /,I2,3F12.3)
CBRG1 (IDF)=0.0
GOTO 285
ENDIF
c CBRG1(IDF)=AZM(IDF)+SITERC(IDF,AZM(IDF))
c CBRG1 (1DF)=AZM (IDF)+SITERR(IDF,AZM(IDF))
CBRG1 (1DF)=AZM (IDF)+SITER2 (10F,AZM(IDF))
c CBRG1 (IDF)=AZM (IDF)
c
.. CHECK THAT CORRECTED ANGLE NON NEGATIVE, ADD 360 FOR PROPER ONE
c
1F(CBRG1(IDF).LT.0.) THEN
c WRITE(6,211) CBRG1(IDF),IDF,AZM(IDF)
c211 FORMAT (1X, 'ANGLE LESS THAN 0..’,F12.3,14,F12.3/)
CBRG1 (IDF) =CBRG1 (IDF)+360.
ENDIF
c IF (TM(IDF) .GT.225300..AND.TM(IDF) . LT.225500.) THEN
c WRITE(6,199) TM(IDF),IDF,AZM(IDF),CBRG1(IDF)
C199 FORMAT (1X,’ DF, BEARINGS ’,F12.3,2X,I12,2F10.4)
c ENDIF
GOTO 285
271 CONTINUE
299 FORMAT (1X, 'NO CORRECTION YET AVAILABLE FOR DF1')
c
C.. CHECK FOR NUMBER OF DFS IN TIME COINCIDENCE
c
285 CALL TIMECO(IDF,TM(IDF),ICNT1,ICC,IYYDDD)
c

C.. FIND NUMBER OF DFS IN COINCIDENCE, IF #DFS=2 CALL NETFIX
Cc.. IF # DFS IS 2 OR MORE USE OPTIMIZER FFIX. IF FFIX FAILS
C.. TO GET A GOOD SOLN, THEN GET BEST CUT FROM NETFIX BASED

Cc.. ON MIN. SEMIMAJOR AXIS OF THE ERROR ELLIPSE.

IF(IN(5).NE.1) GOTO 275
IERR=0

{F ICNT1 IS GREATER THAN 4, ONE OR MORE DFS SAW MORE THAN ONE
EVENT WITHIN THE TIME COINCIDENCE WINDOW

e Xe NeXel

IF (ICNT1.GT.4) THEN
WRITE(6,707) ICNT1,TM(IDF)
707 FORMAT (1X, ‘DF SAW MORE THAN ONE FLASH WITHIN TIME WINDOW..’,
* 14,F12.3)

ICNT1=4
ENDIF
NCNT=ICNT1
ISUM=0
¢ DO 711 IK=1,NCNT
DO 711 IK=1,MNODF
IF(IN(IK).EQ.1)THEN
IN2 (IK)=IK
ISUM=ISUM+1
AZM2 (IK)=AZM(IK)
CBRG?2 ( IK) =ATMP (IK)
ENDIF
711 CONTINUE

(o4
G.. CHECK To SEE IF NUMBER OF DFS IN SOLN EQUALS COUNTER NCNT
C
IF (ISUM.NE.NCNT) TREN
WRITE(6,7277) TM(IDF), ISUM,NCNT,IN,IN2
7277 FORMAT(/1X, ‘TIME CORR ERROR AT ‘,F12.3,12(I2,1X))
GoTo 901

ENDIF
IF(TH(IDP).GT.185500..AND.NDAY.EQ.IA) STOP

USE THIS FOR COMPUTING DF SITE ERRORS

naaonno

1P (IDFTST.EQ.0) GOTO 75
IF(IN2 (IDFTST) .EQ.0) GOTO 901
c WRITE(6,2112) IN,IN2,CBRG2
2112 PORMAT (1X, 2112 IN,IN2,CBRG2 ’,1012,4F10.4)
DO 717 Im=1,MNODF
1P (IN2(I).EQ.IDFTST.AND.NCNT.GE.3)THEN
IN2(I)=0
TAZ1=CBRG2 ( IDFTST)
NCNT=NCNT-1
ICNT1=NCNT
ERDIF
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717 CONTINUE
IF (NCNT.EQ.2.AND.IN2(1) .EQ.IDFTST) GOTO 901
IF(NCNT.EQ.2.AND.IN2(2) .EQ.IDFTST) GOTO 901

c
75 DO 712 KI=1,MNODF-1
IF(IN2(KI).EQ.0.AND.IN2(KI+1).NE.0)THEN
IN2 (KI)=IN2 (KI+1)
AZM2 (KI)~AZM2 (KI+1)
CBRG2 (KT) =CBRG2 (KI+1)
IN2 (KI+1)=0
c IF (TM(IDF).GT.185200. .AND.TM(IDF).LT.185500. ) THEN
c WRITE(6,76) KI,NCNT,IN,IN2,AZM2,CBRG2
76 FORMAT (1X, ’DEBUG KI’,12(I2,1X),8(F7.3,1X))
c ENDIF
ENDIF
712 CONTINUE
c IF (TM(IDF).GT.201815. .AND.TM(IDF).LT.201818.) THEN
c WRITE(6,76) KI,NCNT,IN,IN2,AZM2,CBRG2
¢ ENDIF
¢

C.. MAKE A SECOND PASS THROUGH ABOVE SORTING LOOP IF DFS NOT
C.. LISTED CONSECUTIVELY

¢
IF(IN2(1).EQ.0.OR.IN2(2).EQ.0) GOTO 75
c IF(NEVT.GE.80) STOP
c
IF(ICNT1.GE.2) CALL FFIX(IN2,CBRGZ,TM)
c IF(ICNT1.GE.2) THEN
C811  CALL FFIX(IN2,CBRG2,TM)
¢ WRITE(6,848) TSOLN,IERR,TLAT,TLON,SMA,SMI,ORIEN, IN2, CBRG2, TM
848 FORMAT(/2X, FFIX RETURN ‘,F12.3,12,5812.3/1X,5(12,2X),
* 4 (P12.4,1X),4(F12.3,1X))
c IF(IERR.EQ.~1) GOTO 901
IF(IERR.NE.1.0R.ICNT1.EQ.2) THEN
c WRITE(6,841) TM(4),IERR
p NBADF=NBADF+1
c IF(IERR.EQ.0.OR.ICNT1.EQ.2) THEN
c IF (ICNT1.GE.2)THEN
¢
C.. THIS PORCES BEST 2 DF FIX (BEST = MIN(SMA))
¢
IBDCHK=0
TSTOR3=999.
SMA=999.
ICNT1=2
NCNT=ICNT1
DO 745 I=1,MNODP-1
DO 754 J=2,MNODF
IF(I.GE.J) GOTO 754
IA(1)=IN2(I)
IA(2)=IN2(T)
IF(IA(1).EQ.0.0R.IA(2).EQ.0) GOTO 754
AB(1)=CBRG2(I)
AB(2)=CBRG2 (J)
CALL FFIX(IA,AB,THM)
¢ WRITE(6,872) IER,TSOLN,TLAT,TLON,SMA,IA,AB
c872 FORMAT (1X, ‘LN 872 CHK SOL’,2X,I2,4F12.3,2X,212,2F8.2)
IP(IERR.EQ.1.AND.SMA.LE.TSTOR3) THEN
c
C.. CHECK FOR DIVERGENT ANGLES- SOLN GOES AROUND THE WORLD
¢
XTL= TLAT#DTR
XTLO=TLON#DIR
DO 790 K=1,2
XSL=DLATI (IA(K)) *DTR
XSLO=DLONGI (IA(K) ) *DTR
CALL AZRN(XSL,XSLO,XTL, XTLO,AP1,RP1)
ABM1=AB (K)-5.
ABP1=AB(K) +5.
RP=RP1#ERADL
AZP=AP1/DTR
IF(AZP.GE.ABP1.OR.AZP.LT.ABM1) THEN
c WRITE(6,7979) TSOLN,TLAT, TLON,RP,
c AZP,IA,AB, SMA
c7979 FORMAT (1X, *DVGA’, 4X, SF12.3,2X,
¢ » 212,3F8.2)
¢ IF(NEVT.GE.80) STOP
KDVG=KDVG+1
GOTO 754
ENDIF
790 CONTINUE ORIGINAL PAGE IS
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TSTOR1=TLAT

TSTOR2=TLON
TSTOR3=SMA
TSTOR4=SMI
TSTORS=ORIEN
TSTORG=AREA
TSTOR7=RADIUS
IDT1~IA(1)
IDT2=IA(2)
TBR1=AB(1)
TBR2=AB(2)
IBDCHK=1
ENDIF
754 CONTINUE
745 CONTINUE
TLAT=TSTOR1
TLON=TSTOR2
SMA=TSTOR3
SMI=TSTOR4
ORIEN=TSTORS
AREA=TSTOR6
RADIUS=TSTOR?
IN2 (1)=IDT1
IN2(2)=IDT2
CBRG2 (1) =TBR1
CBRG2 (2) =TBR2
DO 775 KPw3,4
IN2 (KP) =0
CBRG2 (KP) =0
775 CONTINUE
c ENDIF
c ENDIF
c WRITE(6,870) TSOLN,TLAT,TLON,SMA,IN2,CBRG2
870 FORMAT (1X, ‘LN 870 CHK SOL’,4F12.3,2X,5I2,4F8.2)
IF (IBDCHK.NE. 1) THEN
NBADP=NBADF+1
c GOTO 1801
GOTO 901
ENDIF
ENDIF
841 FORMAT(1X,’... NO FIX FROM FFIX AT’ F12.3,’ ERROR=‘,I3)
c IF(IN(1).EQ.0) GOTO 901
XTL=TLAT*DTR
XTLO=TLON#DTR
IF (IDFTST.EQ.0) GOTO 1028
GOTO 1015
c ENDIF
¢
¢ IF(ICNT1.LT.4) GOTO 901 (USE THIS IF ONLY ALL 4 USED)
¢
C.. SET UP FOR 2 DF FIX
c
c IF(ICNT1.EQ.3.AND.IN(1).EQ.1.0R.ICNT1.EQ.2.AND.IN(1).EQ.0)THEN
IF (ICNT1.EQ.2) THEN
c WRITE(S,510) ICNT1,NCNT,IN,IN2,CBRG2,ATMP
DO 715 Ki=1,4
IF (ATMP (K1) .EQ. 0. ) THEN
GoTo 715
ENDIF
IF(IN(K1) .EQ.1.AND.IN2(1).NE.O) THEN
IN2 (2) =K1
CBRG2 (2) =ATMP(K1)
ENDIF
IF(IN(K1).EQ.1.AND.IN2(1).EQ.O)THEN
INZ (1)=K1
CBRG2 (1) =ATMP (K1)
ENDIF
715 CONTINUE
ENDIF
510  FORMAT(1X,’DFDATA..ICNT1,NCNT,IN,IN2,CBRG2,ATMP ’,12I4/1X,8F12.4)
c IF(ICNT1.EQ.2.AND.IN(1).EQ.1) GOTO 890
NCNT=2
c 1F (IERR.EQ.0) GOTO 811
IF(IERR.EQ.~1) GOTO 901
IF (IERR.EQ.0) THEN
c WRITE(6,1101) NCNT,ICNT1,NBR
1101  PORMAT(1X, ‘HERE WE ARE.........’,3I4)
¢ CALL FFIX(IN2,CBRG2,TM)
IF(IERR.EQ.-1) GOTO 901
514 IP(IERR.NE.1) THEN
¢
c WRITE(6,841) TM(4),IERR - e
c1801 CALL NETFIX(IN2(1),CBRG2(1),IN2(2),CBRG2(2),TLAT,TLON) ORIGINAL PAGE IS
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WRITE(§,2099) TSOLN,IN2(1),CBRG2(1),IN2(2),CBRG2(2),

*TLAT, TLON

2099 mDI;ORHAT(lX, ‘2 DF FIX',F12.3,2X,12,¥12.3,2X,12,3Pr12.3)
c IF(IN(1) .EQ.0) GOTO 901
1801 XTL=TLAT*DTR

XTLO=TLON*DTR

IF(IDFTST.GT.0) GOTO 1015

ENDIF

c IF(IDFTST.EQ.0) GOTO 1028
C.. CONVERT SOLN TO RADIANS FOR AZRN TO GET DF1l SITE ERRORS
c IF DF1 NOT IN SOLN THEN SKIP THIS
c

XTL=TLAT*DTR
XTLO=TLON*DTR* (-1.0)
1015 XSL=DLATI(IDFTST) *DTR
XSLO=DLONGI ( IDFTST) sDTR
CALL AZRN(XSL,XSLO,XTL,XTLO,AZ1,R1)

c
C.. CONVERT FROM RADIANS BACK TO KM, EARTH RADIUS=6370 KM
c
c WRITE(6,912) AZ1,R1
912 FORMAT(1X, ‘AZRN SENDS DFDATA AZ1,Rl ’,2F10.6)
AZDEG=AZ1l/DTR
RKM=R1*ERAD1

C.. GET DF 1 BEARING ERROR
C SKIP THIS PART IF NOT NEEDING BEARING ERROR
c

c GOTO 623
IF(ATMP(IDFTST) .EQ.0.00) GOTO 501
WRITE(6,3111) TSOLN,IN2,RKM,AZDEG,DIFDEG,CBRG2

3111 FORMAT(/1X, 'DIFDEG BEFORE TAZ CHECK /,FP12.3,2X,5I2,7F10.4)
c TAZ1=ATMP(1)

TAZ2=~AZDEG
c WRITE(6,3112) TAZ1,TAZ2,DIFDEG,XSL,XSLO,XTL, XTLO

IF(ABS(TAZ2-TAZ1) .GT.300.) THEN
IF(TAZ2.GT.TAZ1l) TAZ1=TAZ1+360.
IF(TAZ2.LT.TAZ1) TAZ2=TAZ2+360.

ENDIF

DIFDEG=TAZ2-TAZ1l
[o] WRITE(6,3112) ‘TAZ),TAZ2,DIFDEG,XSL,XSLO,XTL, XTLO
3112 FORMAT (1X, ‘AFTER TAZ CHECK ‘/,7r10.4)

IF(NEVT.GE.50) STOP

BEFORE ACCEPTING THIS SOLN, CHECK FOR LARGE ERROR RADIUS AND
LAT/LON SOILN WHICH ARE REASONABLE

aonNNNnno

623 IF(SMA.GE.100.) GOTO 625
IF(TLAT.GE.42..0R.TLAT.LT.30.) GOTO 625
IF(TLON.GE.%4..0R.TLON.LT.78.) GOTO 625

625 GOTO 635

c625 WRITE(6,680) TSOLN, TLAT,TLON,SMA .

680 FORMAT(1X, ‘DISTANT OR BAD SOLN..REJECT IT AT ‘,F12.3,2X,

*2F12.6,’ SEMI-MAJOR AXIS=’,F8.2/)
[+
C.. CHECK FOR A BAD SOLN USING 2 BEARINGS AND GIVING SAME
[« SOLN AS PREVIOUS SOLN. THIS IS DUE TO NARROW CUT-ANGLE
[+ NBDF2 IS NO. OF WRONG SOLNS FROM FFIX, CUT SOLN BETTER

c
635 IF (ABS (DIFDEG) . GT. TMX) THEN

NBDF2=NBDF2+1
GOTO 901
ENDIF
IF(TLAT.EQ. PLAT.AND.TLON.EQ. PLON) THEN
KTWOER=KTWOER+1
c WRITE(6,1777) TLAT,PLAT,TLON,PLON
1777 FORMAT (1X, *TLAT, PLAT, TLON, PLON=" , 4F12.6)
GoTO 901
ENDIF
c
C.. SORT DF ANGLE ERROR AS A FCN OF ANGLE IN ERSTAT
c
c CALL ERSTAT (AZDEG, RKM, DIFDEG)
CALL ERSTAT(TAZ1,RKM,DIFDEG, CBRG2)
c
C.. ESTIMATE THE PEAK CURRENT FOR THIS FLASH WITH FCN FKA
c
1028 SKA= FKA(TAMP) ORIGINAL PAGE IS
SNKA=SKA
c OF POOR QUALITY
C.. FIND THE LARGEST NUMBER OF STROKES IN A FLASH
¢
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NRS=0
DO 1411 I=1,NCNT
1411 IF(ITRS(IN2(I)).GT.NRS) NRS=ITRS(IN2(I))
NCNT=0
.. GET THE EQUIVALENT MONTH, DAY, AND YEAR FOR A FLASH
CALL YDDMY (I¥YDSN,NDAY,MON, I¥R)

SET NO RADIUS FROM SOLN TO EMISS1=-999.9% IN SOLN SET

non ononaaon

IF (RADIUS.EQ.0.)THEN
AREA=EMISS1
SMA=EMISS1
SMI=EMISS1
RADIUS=EMISS1
ORIEN=EMISS1
ENDIF
IF (RADIUS.GE.200.) THEN
AREA=EBAD1
SMA=EBAD1
SMI=EBAD1
RADIUS=EBAD1
ORIEN=EBAD1
ENDIF
c
C.. COUNT NUMBER OF 2 DF AND 3 DF SOLNS
c
IF(ICNT1.EQ.2) KNT2=KNT2+1
IF(ICNT1.EQ.3) KNTI=KNT3+1
IF(ICNT1.EQ.4) KNT4=KNT4+1
IF(ICNT1.EQ.1) KNT1=KNT1+1

c
C.. CHECK FOR TIME >24 HOURS, DUE TO DAY CHANGE, NEED TO SUBTRACT 24
c

IF(TSOLN.GE.240000.) TSOLN=TSOLN-240000.
C.. CORRECT FOR LEAP YEAR, NDAY=NDAY+1l (LLP DAY OF CENTURY COUNT IS
C.. INCORRECTLY COMPUTING THIS.

IF{IYR.EQ.88) NDAY=NDAY+1l

WRITE(6,915) TSOLN,IYR,MON,NDAY,AZDEG,RKM,ATMP(1),DIFDEG,
*TLAT, TLON, NRS, SSGNL, SNKA , RADIUS, SMA, SMI, AREA
915 FORMAT(1X,’ SOLN AT‘,F12.3,5X,3I2,2X,4F12.6,’= DF 1 ERROR’/
#2F12.6,14,6F12.2)
WRITE(6,918) IN2,CBRG2
918  FORMAT (1X, ’IN2,CBRG2=’,512,4(F6.2,2X))

.. WRITE SOLN TO DISK FILE ON EADS (UNIT 10)

[t NeNeNrNeNeNoNeNe Ne N el

NEVT=NEVT+1
WRITE(10,3015) NEVT,TSOLN,IYR,MON,NDAY,TLAT,TLON, SNKA,SSGNL,NRS
3015  FORMAT(I6,2X,F12.3,1X,3I2,2F12.6,2F10.2,2X,I2)
WRITE(10,4015) IN2,CBRG2,SMA,SMI,ORIEN,RADIUS,AREA
4015 FORMAT(5I2,4(F6.2,1X),5(F10.2,1X))

IF(NDAY.EQ.14.AND.TSOLN.GT.201815. .AND.TSOLN.LT.201818. ) THEN
WRITE(6,230) (IBUF1(IO),IO=1,128)
WRITE(6,915) TSOLN,IYR,MON,NDAY,AZDEG,RKM,ATMP(1),DIFDEG,
*TLAT, TLON, NRS, SSGNL, SNKA , RADIUS , SMA, SMX , AREA
915 FORMAT(1X,’ SOLN AT’,F12.3,5X,3I2,2X,4F12.6,’= DF 1 ERROR’/
*2F12.6,14,6F12.2)
WRITE(6,3015) NEVT,TSOLN, IYR,MON,NDAY,TLAT,TLON, SNKA,SSGNL, NRS
WRITE(6,4015) IN2,CBRG2,SMA,SMI,ORIEN,RADIUS,AREA
IF(TSOLN.GE.201818.) STOP
ENDIF
WRITE HOURLY SOLN SUMMARY

GO0O000000000N0

IF (NEVT.EQ.1) THEN
LSTHH=IHH ( IDF)
WRITE(6,2017)
2017 FORMAT (20X, ‘EVT’,4X, TIME’,5X, ' YYMMDD’ , 6X, LAT’, 10X, 'LON’,
* 8X, 'KAMPS’, 5X, 'VOLTS’, 2X, ‘RS’ , 4X, /RADIUS’, 4X, ' SMAT’ , 4X,
* 7SMIN’,3X, 'AREA’)
WRITE(6,3017) NEVT,TSOLN,IYR,MON,NDAY,TLAT, TLON,SNKA,SSGNL,
* NRS, RADIUS, SMA, SMI,AREA
3017 FORMAT(/1X, '1ST SOLN (TAPE)=‘,I4,2X,F12.3,1X,3I2,2F12.6,2X,
* 2F10.2,12,4F10.2/)
ENDIF
IF(IHH(IDF) .EQ.LSTHH) KNTHH=KNTHH+1
1F (IHH(IDF) .NE.LSTHH) THEN
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LSTH1=IHH (IDF)
IP(LSTH1.LT.0) LSTHH=0
WRITE(6,3020) LSTHH,KNTHH, IYR,MON,NDAY, NEVT
3020 FORMAT (/1X, ‘HOURLY SUMMARY BEGINNING AT ¢,I2,’ UT IS
* 'DATE=’,3I2,’ TOTAL EVENT COUNT SO FAR=’,I6,’ ::::%
LSTHH=IHH (1DF)
KNTHH=0
ENDIF

Cc890 WRITE(6,899)
890 CONTINUE
899 FORMAT(1X,’ SOLN REQUIRES DF1 FOR 2 DF FIX’)

C.. CLEAR POINTERS

901  NCNT=0
ICNT1=0
LSTDF=IDF
PREVE=CBRG1 ( IDF)
PREVA=AMP ( IDF)
PREVR=IRS (IDF)

c IF(LSTDF.NE.1) AZM(1)=0.
AZDEG=0.
RKM=0.
DIFDEG=0.
PLAT=TLAT
PLON=TLON
TLAT=0.
TLON=0.
RADIUS=0.

AREA=0.
SMA=0.
SMI=0.
ORIEN=0.
DO 340 INF=1,5
IN2 (INF)=0
340 IN(INF)=0
XTL=-1.
XTLO=-1.
IcC=0
DO 345 INFw=1,4
B(INF)=0.
AMP(INF)=0.
IRS (INF)=0
CBRG2 (INF)=0.
345 CBRG1 (INF)=0.
CBRG1 (IDF) =PREVB
AMP (IDF)=PREVA
IRS (IDF)=PREVR
275 DO 2275 INP=1,4
ATMP ( INF) =CBRG1 (INF)
TAMP ( INF) =AMP ( INF)
ITRS (INF) =IRS (INF)
2275 CONTINUE
RETURN
END
SUBROUTINE TIMECO(IDN,TMN,ICNT1,ICC,IYYDDD)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
c

c
c TIMECO CHECKS PFOR TIME COINCIDENCE BETWEEN DFS TO SER c
c HOW MANY DF FIXES SHOULD BE USED IN COMPUTING A SOLN [
c c

[0 0 0 6l 00 ] 0 0] 01 { 0] 6] 0] 0 0 0 0 ] 001 0 5 6 0 0 S 0 1 0 01 G o B 0 B 54 O B O, T B B B B e e 5 O, B O e O G i o ]
c
IMPLICIT DOUBLE PRECISION(A-H,O0-~Z)
COMMON/COM1/IBFLAG, NREC, INCHK, IN(5) , IN2 (5)
COMMON/SOLN/SNKA, SSGNL, TLAT, TLON , RADIUS, AREA,, TSOLN,
*IYDSN, IYR, MON, NDAY, NRS, NBR, IRES, NEVT, SMA, SMT , ORIEN
COMMON/SUMRY,/KTWOER, NTHRS (4) , NBADF, NBDF2, NDUP (4) , NOVR(4) ,
*NDFHT{4) , KDVG
COMMON/KOUNTR/KNT1, KNT2, KNT3 , KNT4 , KNTHH , MTKNT, IDFTST, ISECOD
DOUBLE PRECISTON LTIM
DIMENSION IYYDDD(4)
TCO=0.016
TCPm=0.008

FIRST TIME THROUGH HERE ONLY
ICNT1 IS NUMBER OF DFS IN TIME COINCIDENCE

nonooo
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IF (INCHK.EQ.1) GOTO 15
IF(IN(IDN).EQ.0)THEN
ICC=0
IN(IDN)=1
INCHK=1
FTIM=TMN
LTIM=FTIM
CTTM=RFTTMLTCD
CLOCK=FTIM+TCO
LIDF=IDN
ICNT=1
GOTO 20
ENDIF

c
c.. SUBSEQUENT PASSES GO THRU HERE
c CHECK FOR CHANGE OF DAY AFTER MIDNIGHT
c
15 1F (IYYDDD(IDN) .GT.IYYDDD(LIDF)) THEN
IF( (TMN+240000.) .GT.CLOCK) ITMN=1
IF (ITMN.EQ. 1) THEN

TMN=TMN+240000.
WRITE(6,202) TMN,LTIM
202 FORMAT (1X, DAY-TIME CHANGE CUR TIME=’,F12.3,2X,’LAST=’,
* F12.3)
ENDIF
ENDIF
c
C.. SOLN EXISTS WITHIN THE TIME CORRELATION WINDOW
c
IF (TMN.GT.CLOCK) THEN
IF(ICNT.GE.2)THEN
IN(5)=1
ICNT1=ICNT
TSOLN=FTIM
IYDSN=IYYDDD(LIDF)
ENDIP
GOTO 30
ENDIF
c
C.. CURRENT TIME STILL WITHIN CORRELATION WINDOW
c
IF (TMN.LE.CLOCK) THEN
IF(TMN.GT.CTIM) THEN
IF(ICNT.EQ.1) GOTO 30
c
C.. CHECK FOR DUPLICATE DF IN TIME WINDOW
c
IF(IN(IDN).EQ.1) THEN
35 IN(5)=1
ICNT1=ICNT
TSOLN=FTIM
IYDSN=IYYDDD(LIDF)
GOTO 30
ENDIF
ENDIF
c

C.. DO NOT ALLOW TIME TO DECREASE FROM EVENT I TO EVENT I+l
[
IF (TMN.LT.LTIM) THEN

DO 40 I=1,4
IN(I)=0
40 CONTINUE
c WRITE(6,300) TMN,IDN,LTIM,LIDF
€300 FORMAT (5X,  CURRENT TIME /,F12.3,’ FOR DF’,I12,’ LESS THAN',

c %’ LAST TIME OF ‘,F12.3,’ FOR DF’,I2)

C MTKNT IS NUMBER OF OCCURRENCES OF CURRENT TIME LESS THAN PREVIOUS
(o
MTKNT=MTKNT+1
GOTO 30
ENDIF

c
C.. LOOK FOR MULTIPLE SOLNS WITHIN TIME WINDOW

o]
IF(THN.LE.CTIH.AND.ICNT.GE.2.AND.IN(IDN) .EQ.1) GOTO 35

IF('I'HN.LE.CTIH.AND.IC‘NT.EQ.l.AND.IDN.EQ.LIDF) GOTO 30

ICNT=ICNT+1
IN(IDN)=1

c .
C.. RECOVER THE PREVIOUS DF AND PUT IN SOLN SPACE

[of
IF(ITMP.EQ.1) THEN
ITMP=0
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IN(LIDF)=1

ENDIF
LTIM=TMN
LIDF=IDN
GOTO 20
ENDIF
c
C.. RESET THE POINTERS AND TIME VARIABLES
c
30 ITMP=1
FTIM=TMN
LTIN=FTIM
CTIM=FTIM+TCP
CLOCK=FTIM+TCO
LIDF=IDN
ICNT=1
c20 IP(CLOCK.GT.20181S. .AND.CLOCK.LT.201818. ) THEN
c WRITE(6,23) ICNT2,IDN, IN, ICNT, LIDF, LTIM, FTIM, CLOCK, CTIM
Cc23 FORMAT (1X,  ICNT1,IDN,IN, ICNT, LIDP ’,916/1X, 'LTIM, FTIM, CIOCK,
[+ " CTIM FOR S23‘,4F12.3)
c ENDIF
c RETURN
20 RETURN
END

SUBROUTINE ERSTAT(OBSAZ,RKM,DIFDEG,CBRG2)

CLCCCCCCCCCCCCCCCCOCCOCCCCCCCCCCCCCCCCCCCCCC Ol ClCCCrCrCCCed

[+ [+
C SUBROUTINE ERSTAT SORTS DF ANGLE ERROR AS A FUNCTION OF C
c ANGLE FOR ALL FIXES, AND IN BINS WITH ERROR ELLIPS LESS C
[+ THAN 10 KM AND FLASHES WITHIN 400 KM OF DF, [+
c [+
ClCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCrCCCCrCrrct
c

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
COMMON/COM1/IBFLAG, NREC, INCHK, IN(S) , IN2 (5)
COMMON/SOLN/SNKA, SSGNL, TLAT, TLON, RADIUS , AREA , TSOLN,

*IYDSN, IYR, MON,NDAY, NRS, NER, IRES, NEVT, SMA, SKI , ORIEN
COMMON/DFSTUF/DFE1(128) ,NS1(128) ,DFR10(128) ,NS10(128),
ADFR15(128) ,NS15(128),5Q1(128),5Q10(128) ,5Q15(128)

COMMON/SUMRY/KTWOER, NTHRS (4) , NBADF, NBDF2, NDUP (4) , NOVR(4) ,
ANDFHT (4) , KDVG

COHHON/KOUNTR/KNTI,KHT2,KNTJ,KNT‘,RNTHH,HTRNT,IDFTST,ISECOD

COMMON/ECNST/TMX, RSML1, RSML2 , RBIG, SBIG, BINSIZ

DIMENSION AZM(129),ANWAZM(61),CBRG2(4)

DATA AZH/O.,2.,5.,8.,11.,14.,16.,19.,22.,25.,23.,30.,33.,
*36.,39.,42.,45.,47.,50.,53.,56.,59.,61.,64.,67.,70.,73.,
‘75.,78.,81.,84.,87.,90.,92.,95.,98.,101.,104.,106.,109.,
*112.,115.,118.,120.,123.,126.,129.,132.,135,,137.,140.,
*143.,146.,149.,151.,154.,157.,160.,163.,165.,168.,171.,

'174.,177.,180.,182.,185.,188.,191.,194.,196.,199.,202.,205.,
'208.,210.,213.,216.,219.,222.,225.,227.,230.,233.,236.,239.,
i241.,244.,247.,250.,253.,255.,258.,261.,26‘.,267.,270.,272.,
'275.,278.,281.,284.,286.,289.,292.,295.,298.,300.,303.,306.,
*309.,312.,315.,317.,320.,323.,326.,329.,331.,334.,337.,340.,

*343.,345.,348,,351.,354.,357.,360./
DATA ANHAZH/O.,G.,12.,18.,24.,30.,36.,42.,48.,54.,60.,

*66.,72.,78.,84.,90.,96.,103.,108.,114.,120.,126.,132.,138.,
*144.,150.,156.,162.,168.,174.,180.,186.,192.,198.,204.,210.,
*216.,222.,228.,234.,240.,246.,252.,258.,264.,270.,276. ,282.
*288.,294.,300.,306.,312.,318.,324.,330.,336.,342.,348., 354, ,

*360./
LI2=128
LI2=60
LIN1=LI2-1
DO 15 II=1,LI2
IF(OBSAZ.GE.AZM(II) .AND.OBSAZ.LT.AZM(II+1)) THEN
IF(OBSAZ,GE.ANWAZM(1I) .AND.OBSAZ.LT.ANWAZM(II+1)) THEN
DFE1(II)=DFE1(II)+DIFDEG
SQ1(II)=5Q1 (II)+DIFDEG**2
NS1(II)=NS1(II)+1
IF (ABS (DIFDEG) . LE.TMX) THEN

IF(SMA.GT.0..AND.SMA.LE.SBIG.AND.RKM.GE.RSML1 . AND.

* RKM.LT.RBIG) THEN
DFR10{II)=DFR10(1I)+DIFDEG
SQ10(IX)=SQ1l0(II)+DIFDEG#*+2
NS10(IXI)=NS10(II)+1

ENDIF

IF(SMA.GT.O..AND.SMA.LE.SBYG.AND.RKM.GE, RSML2 . AND.

4 RKM.LT.RBIG) THEN
DFR15(1I)=DFR15(II)+DIFDEG
SQ15(XI)=SQ1S(IXI)+DIFDEG*+2
NS15(II)=NS1S(II)+1

ENDIF
ENDIF
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¢ IF(II.EQ.14)THEN
c WRITE(6,40) II,OBSAZ,DIFDEG,ANWAZM(II),DFE1(II),NS1(II),SMA,
c * DFR10(II),NS10(1I),DFR15(II),NS15(II),5Q1(II),SQ10(II),
c * SQ15(II)
s gg?TAT(IX,’ERR STATS’,I4,4F8.2,I4,2F8.2,14,F8.2,14,3(F8.2,
c WRITE(6,44) TSOLN,TLAT,TLON,IN,IN2,CBRG2
a4 FORMAT (1X, SOLN *,F12.3,2F10.4,1012,4F10.4)
c ENDIF
c
ENDIF

15 CONTINUE
c

RETURN

END

SUBROUTINE ERSUM
CCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCeCeCceccecccecce
[ [o]
[« SUMMARIZES AND PRINTS THE DF ERROR STATISTICS [
C [+
CCCCCCCCCCCCCCCCCCCCCceccececceccccecececccccecceccccccccccccccecec
[of

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
CHARACTER GDATE*8
COMMON/SOLN/SNKA , SSGNL, TLAT, TLON, RADIUS , AREA,, TSOLN,

#IYDSN, IYR, MON,NDAY,NRS, NBR, IRES, NEVT, SMA, SMI , ORIEN

COMMON/DFSTUF/DFE1 (128) ,NS1(128) ,DFR10(128) ,NS10(128),
ADFR15(128) ,NS15(128) ,5Q1(128),5Q10(128),5Q15(128)

COMMON/SUMRY/KTWOER, NTHRS (4) , NBADF, NBDF2 , NDUP (4) ,NOVR(4),
*NDFHT (4) , KDVG

COMMON/KOUNTR/KNT1 , KNT2 , KNT3 , KNT4 , KNTHH , MTXNT , IDFTST, ISECOD

COMMON/ECNST/TMX , RSML1, RSML2, RBIG, SBIG, BINSIZ

. EQUIVALENCE (NCNT,NBR)

DIMENSION AZM(129),ANWAZM(61)

DATA AMES,NT1,NT10,NT15/-999.99,0,0,0/

DATA AZM/0.,2.,5.,8.,11.,14.,16.,19.,22.,25.,28.,30.,33.,
%36.,39.,42.,45.,47.,50.,53.,56.,59.,61.,64.,67.,70.,73.,
»75.,78.,81.,84.,87.,90.,92.,95.,98.,101.,104.,106.,109.,
#112.,115.,118.,120.,123.,126.,129.,132.,135.,137.,140.,
»143.,146.,149.,151.,154.,157.,160.,163.,165.,168.,171.,
*174.,177.,180.,182.,185.,188.,191.,194.,196.,199.,202.,20S.,
«208.,210.,213.,216.,219.,222.,225.,227.,230.,233.,236.,239.,
#241.,244.,247.,250.,253.,255.,258.,261.,264.,267.,270.,272.,
#275.,278.,281.,284.,286.,289.,292.,295.,298.,300,,303.,306.,
*309.,312.,315.,317.,320.,323.,326.,329.,331.,334.,337.,340.,
%343.,345.,348.,351.,354.,357.,360./

DATA ANWAZM/O.,6.,12.,18.,24.,30.,36.,42.,48.,54.,60.,
+66.,72.,78.,84.,90.,96.,102.,108.,114,,120.,126.,132.,138.,
*144.,150.,156.,162.,168.,174.,180.,186.,192.,198.,204.,210.,
*216.,222.,228.,234.,240.,246.,252.,258.,264.,270.,276.,282.,
+288.,294.,300.,306.,312.,318.,324.,330.,336.,342.,348.,354.,
*360./

c LI3=128
LI3=60
WRITE(6,3000) NEVT,TSOLN,IYR,MON,NDAY,TLAT, TLON, SNKA, SSGNL,
* NRS, RADIUS, AREA
1000 FORMAT (/1X, LAST SOLN ON TAPE=’,I6,2X,F12.3,1X,312,2F12.6,2X,
* 2F10.2,12,2F8.2/)
WRITE(6,510) TSOLN, KNTHH, IYR,MON,NDAY
510 FORMAT(//1X,’FINAL HOURLY SUMMARY ON TAPE ENDING AT /,F12.3,
%7 IS’,16,4X, DATE=',312//)
WRITE(6,150) IDFTST,TMX,RSML1,RSML2,RBIG,SBIG,BINSIZ
190 FORMAT(1H1/1X,’ERROR SUMMARY FOR DF’,I2//4X,’ CONSTRAINTS:’,
#5X, 'MIN. ANGLE DEV.=’,F4.1,’ RANGES=’,3F6.1,’ MIN. SMA=’,F6.1,
%/ BEARING ANGLE BIN=‘,F4.1/)

C.. IF IDFTST=0 THEN NOT WANTING SITE ERRORS, SKIP TO SUMMARY

IF(IDFTST.EQ.0) GOTO 600

WRITE(6,210)
210 FORMAT(//4X, /1’ 4X, "AZH! ,4X, N, 5X,
,6X, 'VAR’,8X, *SD’, 6X, 'N’, 6X, 'AV10’, 6X, 'VAR10" , 6X, .
*/N’,6X, 'AV1S’,5X, 'VARIS , 6X, *SD15%/) ARLo?,6X, "8D107, 6X,
DO 15 IK=1,LI3
IF(NS1(IK).LE.1) THEN
X1=DFE1 (IK)
V1=AMES
SD1=AMES
GOTO 300
ENDIF
AS1=FLOAT(NS1(IK))
ASM1=AS1-1.
X1=DFE1 (IK) /AS1
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V1=(SQ1(IK) - DFE1(IK)*%2/AS1)/ASM1
SD1=SQRT (V1)
300 IF(NS10(IK).LE.1)THEN
X10=DFR10 (IK)
V10=AMES
SD10=AMES
GOTO 400
ENDIP
AS10=FLOAT (NS10 (1K) )
ASM10=AS10-1.
X10=DFR10 (IK) /AS10
V10=(SQ10(IK) - DFR10(IK)*#*2/AS10)/ASM10
SD10=SQRT(V10)
400 IF(N515(IK).LE.1)THEN
X15=DFR15 {IK)
V1S=AMES
SD15=AMES
GOTO 500
ENDIF
AS15=FLOAT (NS15 (IK))
ASM15=AS15-1.
X15=DFR15 (IK) /AS1%
V15=(SQ15(IK) - DFR15(IK)*#2/AS15)/ASN1S
SD15=SQRT (V15)

C.. WRITE SITE ERROR INFO TO DISK FILE AND TO PRINTER

LUIN=10+IDFTST
500 WRITE(LUIN,110) IK,ANWAZM(IK),NS10(IK),X10,SD10
110 FORMAT (I4,1X,F5.1,15,2F10.2)
WRITE(6,100) IK,ANWAZM(IK) NS1(IK),X1,V1,SD1,NS10(IK),X10,
* V10,SD10,NS15(IK),X15,V15,SD1S
100 FORMAT (1X,I4,2X,F5.1,15,3F10.2,15,3F10.2,15,3F10.2)
NT1=NT1+NS1 (IK)
NT10=NT10+NS10 (IK)
NT15=NT15+NS15 (IK)
15 CONTINUE
600  WRITE(6,601) NT1,NT10,NT15
601  FORMAT(1X,128(’.’)//1X,’TOTAL NO. OF INPUTS',d4X,'N1=’,I6,4X,
*/N10=’,16,4X, 'N15=/,16)
WRITE(6,611) KNT1,KNT2,KNT3,XNT4,KTWOER, NBADF,NBDF2,
#NDFHT, NTHRS , NDUP, MTKNT, NOVR, KDVG
611  FORMAT(/2X,’NO. OF 1,2,3, OR 4 DF SOLNS=‘,4(I6,2X)/

#2X,’NO. OF BAD REPEAT SOLNSw’,IS,/
#2X,'NO. OF NO-FIXES (NO SOLN) FROM FPIX= ’,I6,/
*2X,‘NO. OF BAD DF AZMS, ANGLE DEVIATION FROM SOLN TOO BIG=‘,I6,/
#2X, TOTAL NO. OF DF HITS=',4(I6,2X)/
*2X,’NO. OF DF HITS BELOW NIN. AMPLITUDE OF 10=’,416,/
*2X,’NO. OF DF DUPLICATE HITS WITHIN TIME CORR. WINDOW=‘,416,/
*2X,’NO. OF OCCURRENCES WITH LATEST TIME LESS THAN PREVIOUS=‘,I6/
#2X,’NO. OF DF OVERANGES=’,4I6/
#2X, 'NO. OF DIVERGENT DF ANGLE PAIRS=’, 16/)
CALL DATEG (GDATE)
CALL TIME(ITIME)
IHTIM=INT (ITIME/360000)
AHTIM=FLOAT (ITIME) /360000,
AMTIM=(AHTIM-IHTIM) *60.
IMTIM=INT (AMTIM)
ASTIM=60. % (ANTIM-INTIM)
STIM=FLOAT ( (IHTIM#100 +IMTIM)*100) +ASTIM
WRITE(6,3) GDATE,STIM,IDFTST
3 FORMAT(//20X, ‘END LLP QUALITY CONTROL ANALYSIS’/20X,’(’,AS,2X,
*r10.2,°)7,10X, 'DF TEST=’,I2)
STOP
END
FUNCTION IFEA(TAMP) CRIGIHAL PACE IS
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FUNCTION FKA RECEIVES THE AMPLITUDES (AMP) OF THE DF’S
AND USES THE GREATEST SIGNAL STRENGTH (BMAX) TO COMPUTE
A RANGE NORMALIZED SIGNAL STRENGTH = DIST*BMAX, WHERE
DIST IS THE DISTANCE BETWEEN THE DF AND THE SOLN POINT.
THIS PRODUCT IS DIVIDED BY 298, A CALIBRATION FACTOR
BASED ON THE LLP ANTENNA AND LIN ET AL’S TRANSMISSION
LINE MODEL OF THE RETURN STROKE, RETURNS PEAK CURRENT
ESTIMATE FOR DISCHARGER

e R e Ko Ne e e Ko Ro Xe Xe
nononnnnonan

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/COM1/IBFLAG, NREC, INCHK, IN(5) , IN2 (5)
COMMON/SOLN/SNKA, SSGNL, TLAT, TLON , RADIUS , AREA, TSOLN,
*IYDSN, IYR, MON,NDAY, NRS,NBR, IRES, NEVT, SMA, SNI , ORIEN
COMMON/DFSTUF/DFE1(128) ,NS1(128) ,DFR10(128) ,NS10(128),
ADFR15(128) ,NS15(128),5Q1(128),5Q10(128),SQ15(128)
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COMMON/SUMRY/KTWOER, NTHRS (4) , NBADF, NBDF2, NDUP (4) ,NOVR(4) ,
#NDFHT (4) , KDVG
conmo§/%6uumn/xnr1,xnrz,xnw:,xNTA,xnrnn,nTxNT,IDFTST,Iszcoo
EQUIVALENCE (NCNT,NER)

DIMENSION TAMP(4)

DIMENSION ALATI (4),ALONGI(4)

DATA ALATI/34.649167,35.399167,35.83750,34.716667/

DATA ALONGI/86.669167,86.076944,87.443889,87.881667/

DATA DTR,ERAD2,NST/0.01745329,6371.,4/

ISPOL=0

BMAX=0.

C.. FIND ID AND AMP OF LARGEST SIGNAL STRENGTH

DO 20 I=1,NCNT

IF(TAMP(IN2(I)).GT.0.) ISPOL=ISPOL+1
IF (ABS (TAMP(IN2(I))) .GT.BMAX) THEN
BMAX=ABS (TAMP (IN2(I))})
KDF=IN2 (I)
ENDIF
20 CONTINUE
IF (KDF.EQ.0) THEN
WRITE(6,50) TSOLN,KDF,IN2,AZ2,R2,BMAX,SPOL, FKA,NCNT, TLAT, TLON,
*RADIUS, TAMP
FKA=-9999.,
RETURN
ENDIF

C.. FIND POLARITY OF MAX AMPLITUDE (POSITIVE IFF ALL DFS POSITIVE)

SPOL=-1.
IF(ISPOL.EQ.NCNT) SPOL=].
RMAX2= BMAX*SPOL
SSGNL=RMAX2

C.. FIND RANGE NORMALIZED DISTANCE

SLAT = ALATI (KDF) *DTR

SLONG = ALONGI (KDF) *DTR

XTL2= TLAT*DTR

XTLO2= TLON*DTR

CALL AZRN (SLAT, SLONG, XTL2, XTLO2,AZ2,R2)

FKA = R2*ERAD2*RMAX2/298.

WRITE(6,50) TSOLN,KDF,IN2,AZ2,R2,BMAX,SPOL, FKA,NCNT, TLAT, TLON,
#RADIUS, TAMP
0 FORMAT (/1X, KA SOLN.. /,F12.3,1X,6I4,5F12.4/1X,’ NCNT’,12,7F10.4)
RETURN
END
FUNCTION SITERR(IDF,BRG)
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCECCCCCCCCCCCCECCCCCCECe

uwaoan o

c (o]
c FUNCTION SITERR RECEIVES A DIRECTION FINDER ID AND c
Cc AN UNCORRECTED BEARING HAVING A KNOWN SITE ERROR WHICH [+
[o] CAN BE FOUND BY A LINEAR INTERPOLATION PROCEDURE APPLIED C
(o] TO A LOOK-UP TABLE FOR THAT DF c
[o] [+
CCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeece
c

COMMON/DFSTUF/DFE1 (128) ,NS1(128) ,DFR10(128) ,NS10(128),
*DFR15(128) ,NS15(128) ,5Q1(128) ,5Q10(128) ,5Q15(128)
COMMON/KOUNTR/KNT1, KNT2,KNT3 , KNT4 , KNTHH, MTKNT,, IDFTST, ISECOD
DIMENSION DF1(60),DF2(60),DF3(60),DF4(60),AZM(61)

DIMENSION DFA(128),DFB(128),DFC(128),DFD(128),AZM1(129)
DATA DF1/-2.47,~1.89,-1.65,-0.13,-1.02,-2.69,-3.57,
*-3.45,-4.00,-2.78,-7.0 ,0.83,1.08,0.89,
%2.14,2.69,3.4,4.09,4.90,5.58,5.39,5.38,5.59,5.89,6.03,6.72,
*6.51,6.44,6.86,7.14,7.04,6.56,6.29,6.21,~4.2,5.13,
*4.61,4.85,5.05,3.50,3.46,2.67,2.72,1.68,-1.2,-1.21,-1.20,
#-0.6,-0.42,-0.3,~0.4,-.87,-1.35,-1.3,-1.65,~4.18,
%24.5,-3.99,-4.29,-3.53/

DATA DF2/-2.1,-1.4,-1.6,-1.6,-1.1,-0.2,0.01,-.15,-.21,
#-,46,~.74,-.61,.96,0.2,-1.7,-3.8,-5.5,-6.1,-6.6,-7.2,
%-5.6,-5.0,-6.8,-9.9,-12.2,-14.0,-14.8,-13.5,-11.6,-9.9,
#-8.0,-6.5,-4.6,-3.2,-0.8,-3.9,2.8,2.50,1.8,1.,-6.4,1.5,
#2.50,3.9,5.4,6.8,3.00,-2.1,-3.2,-2.8,-3.7,-6.6,-9.70,-10.7,
#-8.5,-6.1,-5.3,-3.8,-2.8,-2.3/
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DATA DF3/-1.5,-1.2,-2.0,~2.0,-0.6,-1.7,-1.4,-1.3,-1.2,
#-1.2,-1.1,-0.9,-0.3,.1,0.3,0.50,-.30,-1.9,-0.8,0.4,
#-0.2,~1.5,-2.4,-3.3,-4.3,-5.2,-6.1,-7.0,-8.0,-8.9,-9.8,
#-8.9.-8.0,-7.1,-6.2,-5.3,-4.4,-5.5,-2.0,-1.5,-1.0,~0.46,
*0.05.0.6,1.1,1.6,2.1,2.6,3.1,3.1,2.9,2.1,0.2,~.7,-0.8,
#-2,7,-2.8,-1.5,-1.3,-1.4/

DATA DFP4/-.4,-.7,-.6,.24,.67,1.9,2.0,2.0,2.2,2.3,2.2,
%1.8,5.2,4.2,4.1,4.7,5.1,5.2,5.6,6.4,6.4,5.9,5.0,4.7,4.4,4.1,
#1.7,3.2,3.0,2.7,1.9,1.0,.22,.64,1.3,2.5,2.6,2.3,1.9,1.3,
+.68,.56,.62,.15%,.07,-.2,.07,.05,.10,-.2,~.6,-.3,.1,.5,1.3,
*1.7,1.2,.1,-0.01,-.3/

DATA DFA/-3.7,-2.3,-1.5,-2.0,-.9,.5,.9,.4,-.7,-1.3,
#-1,4,-1.9,-1.8,-3.6,-4.4,-5.5,-4.6,-3.6,-4.2,-2.8,
#-4.2,-2.7,-.2,-1.7,-1.1,1.4,-2.2,1.0,.5,.9,

*.1,2.,.8,0.0,.4,2.5,1.5,3.3,1.7,3.2,
«2.7,1.8,2.9,2.5,2.8,3.0,3.3,4.2,5.3,4.8,
*4.9,3.9,4.3,3.5,4.5,4.4,5.1,6.0,6.4,6.8,
*7.9,8.9,8.9,9.4,6.1,6.0,5.3,5.6,4.7,4.8,
#3.8,3.4,4.3,3.9,4.1,4.6,5.6,5.3,5.6,6.1,
*4.7,4.3,5.8,6.0,3.6,3.6,3.7,2.0,2.8,-3.4,
#-2.0,-1.5,.5,-4.0,.4,-3.7,-2.2,-3.8,-1.2,-4.4,

#-3.0,-2.6,-4.2,~1.7,-5.2,-4.9,-4.5,-7.1,~11.1,=5.4,
»-7.2,-5.8,-2.8,1.2,1.5,-2.4,-1.3,-1.5,-3.8,-2.5,
*-5.4,~.2,-2.0,-.8,-1.2,-.8,~.4,1.5/

DATA DFB/-2.3,-2.3,-1.6,-1.3,-1.5,-1.6,-1.7,-1.7,-1.5,
#-1.2,-0.8,~0.5,-0.3,-0.1,0.,0.,~0.1,-0.2,-0.2,-0.3,
*-0.4,-0.6,-0.7,-0.8,-0.7,-0.4,0.1,0.7,1.0,0.5,-0.6,-1.5,
%-2.3,-3.3,-4.5,-5.3,-5.7,-6.0,-6.2,-6.5,-6.9,-7.2,-7.0,
#-6.5,-5.8,-5.2,-5.0,~5.3,-6.2,-7.7,-9.4,-10.8,-11.9,-12.9,
#-13.8,-14.4,-14.7,~14.9,-14.7,-13.9,-12.8,-11.9,-11.1,
#-10.2,-9.2,-8.3,-7.5,~6.8,-5.9,-5.0,-4.3,~3.5,-2.4,-1.2,
»0.,1.,1.9,2.5,2.8,2.8,2.6,2.3,1.9,1.5,1.1,0.9,0.8,1.,
»1.4,1.7,2.,2.3,3.,3.7,4.3,5.1,6.1,6.8,6.1,3.9,1.1,-1.2,
%-2.8,-3.3,-3.1,-2.9,-2.7,-2.8,-3.4,-4.6,-6.1,-7.6,-9.1,
#-10.2,-10.7,-10.3,~9.0,-7.3,-6.3,-5.8,-5.4,=5.,-4.6,-4.1,
%-3,5,-3.,-2.3,-2.3/

DATA DFC/-1.4,-1.4,-1.6,-1.3,-1.1,-1.6,-2.4,-2.3,-1.4,
#-0.7,-0.6,-1.2,-1.7,~1.6,-1.4,-1.3,-1.3,-1.3,-1.2,-1.1,
#-1.2,-1.2,-1.1,-1.0,-.9,-.8,-.7,-.4,-.1,.1,.2,.3,.4,.5,
*.5,0.,-.9,-1.7,-1.9,-1.2,~.1, .4,.4,-.1,-.9,-1.6,-2.1,
#-3.5,-2.7,~2.9,-2.9,-2.9,-2.8,-2.8,-2.8,-2.9,-3.1,-3.4,
%37, 4., -4.1,-4.2,~4.3,-4.4,-4.5,-4.5,-4.5,~4.5,-4.5,
#-4.5,-4.1,-3.6,~3.5,-4.1,-4.5,-4.4,-4.,-3.4,-2.7,-2.1,
#-1.7,-1.4,-1.1,-1.1,-1.2,-1.3,-1.4,-1.5,-1.3,=-.9,~1.,
*-1.5,-1.9,-2.1,-2.,~1.7,-1.4,-1.1,-.6,.3,1.4,1.8,1.4,
»1.,1.3,2.6,3.8,3.9,3.2,2.6,2.2,1.6,.6,~.2,-.6,~.8,-.8,
%-1.3,-2.4,-3.1,-2.9,-2.5,-2.3,-1.8,-1.2,-1.2,-1.4,-1.4/

DATA DFD/=.3,-.3,~.6,-.7,-.7,-.7,-.4,.1,.5,.6,.9,1.4,

#1.8,2.,2.,2.,2.,2.1,2.2,2.3,2.3,2.3,2.2,2.1,1.9,1.6,1.7,
%2.6,3.6,4.1,4.1,4.1,4.3,4.6,4.9,5.1,5.2,5.2,5.3,5.5,5.9,
%6.3.6.5,6.6,6.5,6.3,6.,5.6,5.2,4.9,4.7,4.6,4.5,4.3,4.2,4.,
#3.8,3.6,3.5,3.3,3.1,3.,2.9,2.7,2.5,2.1,1.7,1.2,.7,.3,.2, .5,
+.9,1.2,1.6,2.1,2.4,2.6,2.6,2.5,2.4,2.2,2.,1.7,1.4,1.1,.8,.5,
2.5..7,.8,.7,.4,.2,.1,.1,~.1,-.2,-.1,0.,.2,.1,0.,~.1,~.1,-.2,
°.3,-14,.6,-.6,-.4,0.,.1,.1,.4,.8,1.2,1.5,1.7,1.6,1.3,.9,

*,5,.2,.2,.1,-.3,-.3/

DATA AZM/O.,6.,12.,18.,24.,30.,36.,42.,48.,54.,60.,66.,72.,
»78.,84.,90.,96.,102.,108.,114.,120.,126.,132.,138.,144.,150.,
*156.,162.,168.,174.,180.,186.,192.,198.,204.,210.,216.,222.,
#228..234.,240.,246.,252.,258.,264.,270.,276.,282.,288.,
#294.,300.,306.,312.,318.,324.,330.,336.,342.,348.,354.,360./

DATA  AzM1/0.,2.,5.,8.,11.,14.,16.,19.,22.,25.,268.,30.,33.,
#36.,39.,42.,45.,47.,50.,53.,56.,59.,61.,64.,67.,70.,73.,
*7%..78.,81.,84.,87.,90.,92.,95.,98.,101.,104.,106.,109.,
*112.,115.,118.,120.,123.,126.,129.,132.,135.,137.,140.,
#143.,146.,149.,151.,154.,157.,160.,163.,165.,168.,171.,
#174.,177.,180.,182.,185.,188.,191.,194.,196.,199.,202.,208.,
%208.,210.,213.,216.,219.,222.,225.,227.,230.,233.,236.,239.,
#241.,244.,247.,250.,253.,255.,258.,261.,264.,267.,270.,272.,
#275.,278.,281.,284.,286.,289.,292.,295.,298.,300.,303.,306.,
#309.,312.,315.,317.,320.,323.,326.,329.,331.,334.,337,,340.,
%343.,345.,348.,351.,354.,357.,360./

DTR=0.01745329

LI=128

LI=60

LI1mLI~-1

IF (ISECOD.EQ. 3) THEN

WRITE(6,32)
FORMAT (1H1/1X, SITE ERROR TABLE’/)
Do 5 I=1,LI
WRITE(6,2) I,AZM(I),DF1(I),DF2(I),DF3(X),DF4(I)
FORMAT (1X, I4,5F10.2)
CONTINUE
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ISECOD=-1
WRITE(6,33)
33 FORMAT (1H1)
ENDIF
NDF=4
DO 10 I=1,LI
IF(BRG.GE.AZH(I).AND.BRG.LT.AZH(I+1))THEN

1F (IDF.EQ.1) THEN
ER1=DF1(I)
ER2=DF1(I+1)
AZ1=AZM(I)
AZ2=AZM(I+1)
ELSE IF(IDF.EQ.2)THEN
ER1=DF2 (1)
ER2=DF2 (I+1)
AZ1=AZM(I)
AZ2=AZM(I+1)
ELSE IF(IDF.EQ.3)THEN
ER1=DF3 (I)
ER2=DF3 (I+1)
AZ1=AZM(I)
AZ2=AZM (I+1)
ELSE IF(IDF.EQ.4)THEN
ER1=DF4 (1)

ER2=DF4 (I+1)
AZ1=»AZM(I)
AZ2=AZM(I+1)
ENDIF
ENDIF
10 CONTINUE

C.. PERFORM INTERPOLATION

SLOPE= (ER2-ER1)/ (AZ2-AZ1)
SITERR=ER2-SLOPE* (AZ2-BRG)
IF(IDF.GT.0) GOTO 909

TEMPORARY CORRECTION TO DFS3 AND 1

IF(IDF.EQ.3) THEN
SITERR=-3.5+.6*SIN(2.*BRG*DTR) ~5.14C0S (2. *BRG*DTR)

ENDIF

IF (IDF.EQ.IDFTST) SITERR=0.

IF(IDF.EQ.1) SITERR=O.

WRITE(6,25) IDF,BRG,SITERR

FORMAT (1X,I2,2X,2(F6.2,2X))

po 120 I=1,LI

WRITE(6,35) I,DF2(I),DF3(I),DF4(X), AZM(I)
35 FORMAT (1X,I4,4(F6.2,2X))

C120 CONTINUE
c WRITE(6,399)

109 FORMAT (1X,’GOING BACK TO DFDATA’)

909  RETURN

noann [eXe X KeNeNeNe]

END

FUNCTION SITERC(IDF,BRG)
C('LL"LLLL;[_L‘,(_L;LLLLLQL‘.Illlllllll(ll(!((ll[[l(l(lllll((([(lL\_
[+ o
] FUNCTION SITERC IS A MOD TO SITERR USING CONSTRAINT o4
c POINTS FROM VISUAL AND RADR CONFIRMATION OF CELL [o4
[o] LOCATION. USES A LINEAR INTERPOLATION PROCEDURE APPLIED C
c TO A LOOK-UP TABLE FOR THAT DF [o]
(o] o]
CCCCCCCCCCCCCCCCCCCCCCLLLLLLLLLLLLLLLLLbLLLLLLLLLLL&LLLLCCCCCC

[e]

COMMON/SOLN/SNKA , SSGNL, TLAT, TLON, RADIUS , AREA, TSOLN,

#IYDSN, IYR, MON, NDAY, NRS, NBR, IRES , NEVT, SMA, SMI,ORIEN

COMMON,/ DFSTUF/DFE1 (128) ,NS1(128) , DFR10(128) ,N510(128),
»DFR15(128) ,NS15(128) ,SQ1(128),5Q10(128),5Q15(128)
COMMON/KOUNTR/KNT1 , KNT2 , KNT3 , KNT4 , KNTHH , MTKNT, IDFTST, ISECOD
DIMENSION DF1(60),DF2(60),DF3(60),DF4(60),AZM(61)

DATA DF1/4.0,4.0,1.65,-0.13,-2.0,-5.0,2.0, 00147223
#4.0,-4.00,-5.0,-5.5 ,0.83,1.08,0.89, 00147323
%2.14,2.69,3.4,4.09,4.90,5.58,5.39,5.38,5.59,5.89,6.03,6.72, 00147423
+6.51.6.44,6.86,7.14,7.04,6.56,6.29,6.21,-4.2,5.13, 00147523
+4.61,4.85,5.05,-1.0,-1.0,2.67,2.72,1.68,-1.2,-1.21,-1.20, 00147723
#-0.6,-0.42,-3.0,-5.0,-.87,-1.35,-1.3,-1.2,~.5, 00247823
%0.5,0.5,0.5,2./ 00148023

DATA DF2/-2.1,-1.4,-1.6,-1.6,-1.1,-0.2,0.01,-.15,-.21,
*-.46,-.74,-.61,-1,,-1.5,-1.7,~3.8,-5.5,~6.1,-6.6,-7.2,
#-%5.6.-5.0.-6.8,-9.9,-12,2,-14.0,-14.8,-13.5,-11.6,-9.9,
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a3

10

c..

oOONOOON0O

#-§.0,-6.5,-4.6,~3.2,-0.8,0.0,0.0,0.00,=2.,-2.,-1.5,~4.,
#-10.,3.9,5.4,6.8,3.00,-2.1,-3.2,-2.8,~3.7,~6.6,-9.70,~10.7,
*-8.5,-6.1,-5.3,~3.8,=2.8,=2.3/

DATA DF3/-1.5,-1.2,~2.0,~2.0,-0.6,~1.7,-1.4,-1.3,-1.2,
©-1.2,-1.1,~0.9,-0.3,.1,0.3,~1.0,-2.4,-1.9,~0.8,-1.,
#-3.0,-2.5,0.0,0.0,~2.0,-8.0,~12.,~11.,-10.,~10.,-9.8,
#-5.9,-5.0,-4.5,-4.0,-3.5,-3.0,-2.5,-2.0,-1.5,-1.0,-0.46,
+0.05,0.6,1.1,1.6,2.1,2.6,3.1,3.1,2.9,2.1,0.2,-.7,~0.8,
#-2.7,-2.8,-1.5,-1.3,=1.4/

DATA DF4/-.4,-.7,-.6,.24,.67,1.9,2.0,2.0,2.2,2.3,4.0,
«2.0,1.5,3.2,4.1,4.7,5.1,5.2,5.6,6.4,6.4,5.9,4.5,2.0,4.4,4.1,
*3.7,3.2,3.0,2.7,1.9,1.0,.22,.64,1.3,2.5,2.6,2.3,1.9,1.3,
«.68,.56,.62,.15,.07,-.2,.07,.05,.10,~.2,-.6,-.3,.1,.5,1.3,
*1.7,1.2,.1,-0.01,-.3/

DATA AZM/O.,6.,12.,18.,24.,30.,36.,42.,48.,54.,60.,66.,732.,
*78.,84.,90.,96.,102.,108.,114.,120.,126.,132.,138.,144.,150.,
»156.,162.,168.,174,,180.,186.,192.,198.,204.,210.,216.,222.,
%228.,234.,240.,246.,252.,258.,264.,270.,276.,282.,288.,
*294.,300.,306.,312.,318,,324.,330,,336.,342.,348.,354.,360./

IF(IDF.EQ.IDFTST) THEN
SITERC=0.0
RETURN

ENDIF

SLOPE=O.

DTR=0.01745329

LI=60

LIl=LI-1

IF (ISECOD.EQ. 1) THEN

WRITE(6,32)

FORMAT(1H1/1X, ‘SITE ERROR TABLE’/)

DO 5 I=1,LI

WRITE(6,.2) I,AZM(I),DF1(I),DPa(I),DF3i(I),DF4(I)
FORMAT(1X, I4,5F10.2)

CONTINUE

ISECOD=—1

WRITE(6,33)

FORMAT (1H1)

ENDIF
NDF=m4

DO 10 I=1,LI
IF(BRG.GE.AZM(I).AND.BRG.LT.AZM(I+1))THEN

IF(IDP.FQ.1)THEN
ER1=DF ' (I)

ER2=DF1 (I+1)
AZ1=AZM(I)
AZ2=AZM(I+1)

COTO 20

ELSE IF(IDF.EQ.2)THEN
ER1=0F2 (I}

ER2=DF2 (I+1)
AZ1=AZM(I)
AZ2=AZM(I+1)

GOTO 20
ELSE IF(IDF.EQ.3)THEN
ER1=DF3 (I)

ER2=DF3 (I+1)

AZ1=AZM(I)
AZ2=AZM(I+1)
GOTO 20
ELSE IF({IDF.EQ.4)THEN
ER1=DF4 (I)
ER2=DF4 (I+1)
AZ1=AZM(I)
AZ2=AIM(I+1)
GOTO 20
ENDIF
ENDIF
CONTINUE

PERFORM INTERPOLATION

DELA=AZ2~AZl

SLOPE= (ER2~ER1) /DELA
SITERC=ER2-SLOPE* (AZ2-BRG)
IF(IDF.GT.0) GOTO 919

TEMPORARY CORRECTION TO DFS3 AND 1

IF(IDF.EQ.3)THEN
IF(BRG.CE.150..AND.BRG.LE.180.) THEN
SITERC=SITERC-]
EINDIF
ENDIF
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919

IF (IDF.EQ.2) THEN
IF(BRG.GE.230. .AND.BRG.LE.250.) THEN
SITERC=SITERC-6.
ENDIF
ENDIF
IF(IDF.EQ.1) THEN
IF(BRG.GE.330. .AND.BRG.LE.340.) THEN
SITERC=SITERC+3.
ENDIF
ENDIF
IF (IDF.EQ.4) THEN
1F (BRG.GE. 65. .AND. BRG.LE.75.) THER
SITERC=SITERC+1.5

ENDIF

ENDIF

IF (IDF.EQ.3) THEN
SITERR=-3.5+.64SIN(2.*BRG*DTR) -5.1#C0S (2. *BRG*DTR)

ENDIF

WRITE(6,25) IDF,BRG,SITERR
FORMAT (1X,12,2X,2(F6.2,2X))
DO 120 I=1,LI
WRITE(6,35) I,DF2(I),DF3(I},DF4(I),AZM(I)
FORMAT (1X, 14,4 (F6.2,2X))
CONTINUE
WRITE(6,399)
FORMAT (1X, *GOING BACK TO DFDATA’)
RETURN
END
FUNCTION SITER2(IDF,BRG)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

[eNeNrNr e Ne Ke!

o4
FUNCTION SITER2 RECEIVES A DIRECTION FINDER ID AND [of
AN UNCORRECTED BEARING HAVING A KNOWN SITE ERROR WHICH [o4
CAN BE FOUND BY FITTING A POLYNOMIAL OF DEGREE 6. [o4
o]
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

COMMON/DFSTUF/DFE1(128) ,NS1(128) ,DFR10(128) ,NS10(128),
*DFR15(128) ,N515(128),5Q1(128),5Q10(128) ,SQ15(128)

COMMON,/KOUNTR,/KNT1, KNT2 , KNT3 , KNT4 , KNTHH, MTKNT, IDFTST, ISECOD

DIMENSION DFA(60),DFB(60),DFC(60),DFD(60),AZM(61)

DIMENSION AO(4),AD1(12),AD2(12),AD3(12),AD4(12)

DATA AO0/1.63,-3.33,-1.47,1.94/

DATA AD1/0.8788,-4.9730,-0.4359,0.2113,-0.2401,0.2218,
#0.4777,0.0991,0.8518,0.1006,0.4715,0.4008/

DATA AD2/-2.1636,1.6295,4.9684,~2.5906,~0.0242,1.3654,
*0,7188,0.7636,-1.6591,0.7491,0.2532,-0.1620/

DATA AD3/-0.3506,1.2770,-0.3550,~1.5981,-0.0535,-0.1957,
*0.4947,-0.1734,0.5484,0.4748,-0.2303,0.3460/

DATA AD4/2.0684,-1.2777,-0.6224,-0.6550,-0.3275,0.4715,
*0.0013,-0.5282,0.0014,~0.2151,-0.3507,~0.3409/

DATA DFA/-2.47,-1.89,-1.65,-0.13,-1.02,~2.69,-3.57,
*-3.45,-4.00,-2.78,-7.0 ,0.83,1.08,0.89,
*2.14,2.69,5.3,4.09,4.90,5.58,5.39,5.38,5.59,5.89,6.03,6.72,
*6.51,6.44,6.86,7.14,7.04,6.56,6.29,6.21,-4.2,5.13,
%4.61,4.85,5.05,3.50,3.46,2.67,2.72,1.68, 2.0,-1.21,-1.20,
*-0.6,-0.42,-0.3,-0.4,-.87,-1.35,~1.3,-1.65,-4.18,
*-1.3,-3.99,-4.29,-3.53/

DATA DFB/-2.1,-1.4,-1.6,-1.6,-1.1,-0.2,0.01,~.15,-.21,
#-.46,-.74,-.61,.96,0.2,~1.7,-3.8,-5.5,-6.1,-6.6,-7.2,
«-5.6,-5.0,-6.8,-9.9,-12.2,-14.0,-14.8,-13.5,-11.6,-9.9,
*-8.0,-6.5,-4.6,-3.2,-0.8,-3.9,2.8,2.50,1.8,1.,-6.4,1.5,
*2.50,3.9,5.4,6.8,3.00,-2.1,-3,2,-2.8,-3.7,-6.6,-9.70,-10.7,
*#~8.5,-6.1,~5.3,~3.8,-2.8,-2.3/

DATA DFC/-1.5,-1.2,-2.0,-2.0,-0.6,-1.7,-1.4,-1.3,-1.2,
*-1,2,-1.1,-0.9,-0.3,.1,0.3,0.50,-.30,~-1.9,-0.8,0.4,
#-0,2,-1.5,-2.4,-3.3,-4.3,-5.2,-6.1,-7.0,-8.0,-8.9,-9.8,
%-8.9,-8.0,-7.1,~6.2,-5.3,-4.4,-5.5,-2.0,-1.5,-1.0,-0.46,
*0.05,0.6,1.1,1.6,2.1,2.6,3.1,3.1,2.9,2.1,0.2,-.7,-0.8,
*-2.7,-2.8,-1.5,~1.3,-1.4/

DATA DFD/-.4,-.7,-.6,.24,.67,1.9,2.0,2.0,2.2,2.3,2.2,
%1.8,5.2,4.2,4.1,4.7,5.1,5.2,5.6,6.4,6.4,5.9,5.0,4.7,4.4,4.1,
%3.7,3.2,3.0,2.7,1.9,1.0,.22,.64,1.3,2.5,2.6,2.3,1.9,1.3,
*.68,.56,.62,.15,.07,-.2,.07,.05,5.0,-.2,-.6,~-.3,.1,.5,1.3,
%1.7,1.2,.1,-0.01,-.3/

DATA AZM/O.,6.,12.,18.,24.,30.,36.,42.,48.,54.,60.,66.,72.,
*78.,84.,90.,96.,102.,108.,114.,120.,126.,132.,138.,144.,150.,
*156.,162.,168.,174.,180.,186.,192.,198.,204.,210.,216.,222.,
*228.,234.,240.,246.,252.,258.,264.,270.,276.,282.,288.,
*294.,300.,306.,312.,318.,324.,330.,336.,342.,348.,354.,360./
DTR=0.01745329

LI=12 .n
LIl=LI-1 QR?G?M::.

{_‘f i
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IF (ISECOD.EQ.2) THEN
WRITE(6,32)

32 FORMAT (1H1/1X, SITE ERROR PCLYNOMIAL’/)
WRITE(6,3) (AO(I),I=1,4)

3 FORMAT (1X, AO=/,4F10.4/}
DO 5 I=1,12

WRITE(6,2) I,AD1(I),AD2(I),AD3(I),AD4(I)

2 FORMAT (1X, I4,4F10.4)
5 CONTINUE
ISECOD=-1
WRITE(6,33)
33 FORMAT (1H1)
ENDIF
NDF=4
c
C.. CORRECTED BEARING ANGLE Y=AO+A1SINX+A2COSX+...+A11SIN6X+A12COS6X
c
STERM=0.
CTERM=0.
DO 20 J=1,6
TI=DTR*FLOAT (J)
ITF=(J~1) #2+1
ICT=(J-1) *2+2
IF(IDF.EQ.1) THEN
STERM=AD1 (ITJ) *SIN (TI*BRG)+STERM
CTERM=AD1 (ICJ) *COS (TJI *BRG) +CTERM
ENDIF
IF (IDF.EQ.2) THEN
STERM=AD2 (ITJ) *SIN(TJ*BRG)+STERM
CTERM=AD2 ( ICJ) *COS (TJ*BRG) +CTERM
ENDIF
IF(IDF.EQ.3)THEN
STERM=AD3 (ITJ) *SIN (TJ+BRG)+STERM
CTERM=AD3 (ICJ) #COS (TJ*BRG) +CTERM
ENDIF
IF(IDF.EQ.4)THEN
STERM=AD4 (ITJ) *SIN (TJ*BRG)+STERM
CTERM=AD4 (ICJ) #COS (TJ #BRG) +CTERM
ENDIF
20 CONTINUE
SITER2=A0 (IDF) +STERM+CTERM
c
IF(IDF.EQ.IDFTST) SITER2=0.
c WRITE(6,25) IDF,BRG,SITER2
25 FORMAT (1X,12,2X,2 (F6.2,2X))
c DO 120 I=1,LI
c WRITE(6,35) I,DF2(I),DF3(I),DF4(I),AZM(I)
35 FORMAT (1X, T4, 4 (F6.2,2X) )
€120 CONTINUE
c WRITE(6,399)

399 FORMAT(1X,’GOING BACK TO DFDATA')
909 RETURN
END
FUNCTION STDEVB/IDF, BRG)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

[o] [+
c FUNCTION STDEVB RECEIVES A DIRECTION FINDER ID AND (o]
o AN BEARING ANGLE HAVING A KNOWN SITE ERROR WHICH C
o] IS USED TO COMPUTE THE POLYNOMIAL FORM OF THE BEARING (o]
C STANDARD DEVIATION AS A FCN. OF ANGLE FOR USE IN FFIX [o]
[o] [+]
CCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCeCCCCececceececieceiece
c

COMMON,/ DFSTUF/DFE1 (128) ,NS1(128) ,DFR10(128) ,NS10(128),
*DFR15(128) ,NS15(128),5Q1(128) ,SQ10(128),SQ15(128)

COMMON,/KOUNTR,/KNT1, KNT2 , KNT3 , KNT4 , KNTHH, MTKNT, IDFTST, ISECOD

DIMENSION SDA(60),SDB(60),SDC(60),SDD(60),AZM(61)

DIMENSION BO(4),BD1(12),BD2(12),BD3(12),BD4(12)

DATA BO/1.63,-3.33,~1.47,1.94/

DATA BD1/0.8788,-4.9730,-0.4359,0.2113,-0.2401,0.2218,
*0.4777,0.0991,0.8518,0.1006,0.4715,0.4008/

DATA BD2/-2.1636,1.6295,4.9684,-2.5906,-0.0242,1.3654,
*0.7188,0.7636,-1.6591,0.7491,0.2532,-0.1620/

DATA BD3/-0.3506,1.2770,-0.3550,-1.5981,-0,0535,-0.1957,
*0.4947,-0.1734,0.5484,0.4748,-0.2303,0.3460/

DATA BD4/2.0684,-1.2777,-0.6224,-0.6550,-0.3275,0.4715,
#0.0013,-0,.5282,0.0014,-0.2151,-0.3507,-0.3409/

DATA SDA/-2.47,-1.89,-1.65,-0.13,~1.02,-2.69,-3.57,
*-3.45,-4.00,~2.78,-7.0 ,0.83,1.08,0.89,
*2.14,2.69,5.3,4.09,4.90,5.58,5.39,5.38,5.59,5.89,6.03,6.72,
%6.51,6.44,6.86,7.14,7.04,6.56,6.29,6.21,-4.2,5.13,
*4.61,4.85,5.05,1.50,3.46,2.67,2.72,1.68, 2.0,-1.21,-1.20,
%-0.6,-0.42,-0.3,-0.4,-.87,-1.35,-1.3,~1.65,-4.18,
*-1.3,-3.99,-4.29,-3.53/
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DATA SDB/-2.1,-1.4,-1.6,-1.6,~1.1,-0.2,0.01,-.15,~.21,
*~,46,-.74,-.61,.96,0.2,-1.7,-3.8,-5.5,-6.1,-6.6,-7.2,
#-5.6,-5.0,-6.8,-9.9,-12.2,-14.0,-14.8,~13.5,-11.6,-9.9,
%-8.0,-6.5,-4.6,~3.2,-0.8,-3.9,2.8,2.50,1.8,1,,-6.4,1.5,
+2.50,3.9,5.4,6.8,3.00,~2.1,-3.2,-2.8,-3.7,-6.6,-9.70,-10.7,
*-8,5,-6.1,-5.3,-3.8,-2.8,-2.3/

DATA SDC/-1.5,-1.2,-2.0,-2.0,-0.6,-1.7,-1.4,-1.3,-1.2,
#-1.2,-1.1,-0.9,-0.3,.1,0.3,0.50,-.30,-1.9,-0.8,0.4,
%#-0.2,-1.5,-2.4,-3.3,-4.3,-5.2,-6.1,-7.0,-8.0,-8.9,-9.8,
#-8.9,-8.0,-7.1,-6.2,-5.3,-4.4,-5.5,-2.0,-1.5,-1.0,-0.46,
%0.05,0.6,1.1,1.6,2.1,2.6,3.1,3.1,2.9,2.1,0.2,-.7,-0.8,
*-2.7,-2.8,-1.5,-1.3,-1.4/

DATA SDD/-.4,-.7,-.6,.24,.67,1.9,2.0,2.0,2.2,2.3,2.2,
+1.8,5.2,4.2,4.1,4.7,5.1,5.2,5.6,6.4,6.4,5.9,5.0,4.7,4.4,4.1,
+3.7,3.2,3.0,2.7,1.9,1.0,.22,.64,1.3,2.5,2.6,2.3,1.9,1.3,
*.¢8,.56,.62,.15,.07,-.2,.07,.05,5.0,-.2,-.6,-.3,.1,.5,1.3,

*#1.7,1.2,.1,-0.01,-.3/

DATA AZM/O.,6.,12.,18.,24.,30.,36.,42.,48.,54.,60.,66.,72.,
+78.,84.,90.,96.,102.,108.,114.,120.,126.,132.,138.,144.,150.,
*156.,162.,168.,174.,180.,186.,192.,198.,204.,210.,216.,222.,
#228.,234.,240.,246.,252,,258.,264.,270.,276.,282.,288.,
*294.,300.,306.,312.,318.,324.,330.,336.,342.,348.,354.,360./

DTR=0.01745329

LI=12

LI1=LI-1

IF (ISECOD.EQ. 2) THEN

WRITE(6,32)
32 FORMAT (1H1/1X, ‘SITE ERROR ST. DEV. POLYNOMIAL’/)
WRITE(6,3) (BO(I),I=1,4)
3 FORMAT (1X, ‘BO=',4F10.4/)
Do 5 I=1,12
WRITE(6,2) I,BD1(I),BD2(I),BD3(I),BD4(I)
2 FORMAT (1X, I4,4F10.4)

5 CONTINUE
ISECOD=-1
WRITE(6,33)

33 FORMAT (1H1)

ENDIF
NDF=4

.. CORRECTED BEARING ANGLE Y=AO+A1SINX+A2COSX+...+A11SIN6X+Al12C0O56X

(e ReNe]

STERM=0.
CTERM=0.
Do 20 J=1,6
TI=DTR*FLOAT (J)
ITI=(J-1) *2+1
ICT=(J-1)*2+2
IF(IDF.EQ.1) THEN
STERM=BD1 (ITJ) *SIN (TJ*BRG)+STERM
CTERM=BD1 (ICJ) *COS (TJ*BRG) +CTERM
ENDIF
IF (IDF.EQ.2) THEN
STERM=BD2 (ITJ) *SIN (TJ*BRG) +STERM
CTERM=BD2 (ICJ) *COS (TJ *BRG) +CTERM
ENDIF
IF (IDF.EQ.3) THEN
STERM=BD3 (ITJ) *SIN (TJ*BRG) +STERM
CTERM=BD3 (ICJ) *COS (TJ*BRG) +CTERM
ENDIF
IF (IDF.EQ.4) THEN
STERM=BD4 (ITJ) *SIN (TIJ*BRG) +STERM
CTERM=BD4 ( ICJ) *COS (TJ*BRG) +CTERM

ENDIF
20 CONTINUE
STDEVB=BO0 (IDF) +STERM+CTERM
c WRITE(6,25) IDF,BRG,STDEVB
25 FORMAT (1X,I2,2X,2(F6.2,2X))
c DO 120 I=1,LI
c WRITE(6,35) I,DF2(I),DF3(I),DF4(I),AZM(I)
15 FORMAT(1X,I4,4 (F6.2,2X))

C120 CONTINUE
909 RETURN

END

SUBROUTINE FFIX(BRGID, TEMPBR,TM)
CCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceeeceeee

cc THIS PROGRAM IS A VECTOR APPROACH TO DF FIXING cc
cec MODIFIED AT MSFC TO COMPUTE OPTIMAL LLP SOLNS FROM DF DATA cc
cc AFTER SITE ERRORS REMOVED FROM DATA (SJG/01-05-86) cc

€ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
c
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION TEMPBR(4),LOD(4),LOS{4),LOM(4),LAD(4),LAM(4),LAS(4)
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DIMENSION BRGSV(50)
DIMENSION ISUB(S50),IUSE(S0)
CHARACTER*1 N,S,E,W,NORS, EORW
INTEGER KNAME (50) , BRGID(4)
DIMENSION SIGX(4),TM(4)

DOUBLE PRECISION NXSX,NXSY,NXSZ
INTEGER SEQ1,SEQ2

DOUBLE PRECISION INVAR
INTEGER SAVE
DIMENSION SINT(32)
EQUIVALENCE (SINT(1),STAZ(1)), (NCNT,NBR), (IERR,IRES)
DIMENSION XHISQ(30)
COMMON K,NST,WBRF, INVAR(50) ,COST(50),
1 SING(50),COSG(50),STAX(50),STAY (50),STAZ(50),ISTA(S0),
2 BRNX(50),BRNY(50),BRNZ(50) ,IL(50),SAVE(50),SWT(50),
3 NXSX(50) ,NXSY(50),NXSZ(50),
4 CHISQ(30),DTR,WT(50),TX,TY,T2,E1,E2,E3,
s c11,c22,€33,€13,C12,C23
COMMON/SOLN/SNKA, SSGNL, TLAT, TLON , RADIUS , AREA, TSOLN,
*IYDSN, IYR, MON,NDAY, NRS, NBR, IRES, NEVT, SMA, SMI , ORTEN
COMMON/KOUNTR/KNT1, KNT2, KNT3 , KNT4 , KNTHH, MTKNT , IDFTST, ISECOD
DATA N,S,E,W/’/N’,’S*,’E!, 'W’/
DATA KNAME/1,2,3,4,46%0/
DATA LOD/86,86,87,87/,
1LOM/40,04,26,52/,
L0S/09,37,38,54/,
LAD/34,35,35,34/,
LAM/38,23,50,43/,
LAS/57,57,15,00/
#*ass* USING 20 PER CENT TABLES #Aashussaw
DATA XHISQ/1.642,3.219,4.642,5.989,7.289,8.558,9.803,11.030,
B12.242,13.442,14.631,15.812,16.985,18.151,19.311,20.465,21.615,
€22.760,23.900,25.038,26.171,27.301,28.429,29.553,30.675,31.795,
D32.912,34.027,35.139,36.250/

* %%

IF(NBR.EQ.0) GOTO 869

IF(NBR.EQ.2)THEN
IF (BRGID(1) .EQ.0.0R.BRGID(2) .EQ.0) THREN
WRITE(6,1191) NBR,BRGID,TEMPBR,TM(1),TM(2)
FORMAT (1X, ‘NULL BRGID FPOR NBR =‘,S5I3,4F12.6,2X,2(F12.3,2X))
GOTO 871
ENDIF

ENDIF

DTR = .01745329

TX=0.

TY=0.

TZ=0.

El=0.

E2=0.

E3=0.

C11=0.

€22=0.

c33=0.

C13=0.

C12=0.

C23=0.

WBRF=0.

IFLSH=0

DO 101 II=1,30

CHISQ(II) = XHISQ(II)

NST IS THE NUMBER OF STATIONS IN THE TABLE

READ (5,1) NST

FORMAT (I3)

NST=4

DO 20 I=1,NST

READ THE INDIVIDUAL STATION PARAMETERS

READ(5,2) KNAME(I),LAD,LAM,LAS,LOD,LOM,LOS,SIGX (1)
FORMAT (A2,6I4,1X,F5.1)

SLAT = LAD(I)+(LAM(I)+LAS(I)/60.)/60.

SLONG = LOD(I)+{LOM(I)+LOS(I)/60.)/60.

SLAT = SLAT*DTR

LONGITUDE INTERNAL TO THE PROGRAM IS NEGATIVE FOR WEST AND
POSITIVE FOR EAST. DATA SUBMITED AND PRINTED USES THE OPOSITE
CONVENTIONS

SLONG = -SLONG*DTR
COSG (I)=DCOS (SLONG)

SING(I) = DSIN(SLONG)

COST(I) = DCOS(SLAT)

COMPUTE THE STATION VECTOR(STAX,STAY,STAZ)
STAZ(I) = DSIN(SLAT)

STAX(I) = COST(I)*COSG(I)

STAY(I) = COST(I)*SING(I)
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WRITE(6,324) STAX(I),STAY(I),STAZ(I)
FORMAT (1X, 3 (F12.4,1X))

$##4CALCULATE INVERSE STATION VARIANCE HERE

SIGX IS THE STANDARD DEVIATION IN DEGREES OF BEARINGS FROM THIS
'DF ID$’=I. IT HAS LITTLE OR NO IMPACT ON THE SOLN, BUT THE
CONFIDENCE RADII ARE DIRECTLY PROPORTIONAL TO THE VALUE OF
SIGX. 1IN ADDITION, SOME DISTANT SOLNS MAY NOT BE COMPUTED
WHEN SIGX IS LARGE (SAY 1 DEG WITH SOLN 500 KM FROM DF).

SIGX(I)=1.5
WRITE(6,3) KNAME(I),LAD(I),LANM(I),LAS(I)
* ,LOD(I),LOM(I),LOS(I),SIGX(I)

FORMAT (1X,I2,6I6,F5.2)
CONTINUE

FORMAT {A3)

INDSK=10

CONTINUE

DO 301 IX=1,50
TUSE (IX)=0

ISUB(IX)=0

NBR IS THE NUMBER OF BEARINGS IN THIS FLASH

IFLSH=IFLSH+1

DO 40 J=1,NBR

READ(9,235) BRGID, TEMPBR(J)
FORMAT (1X,1I1,1X,F6.2)
WRITE(6,241) BRGID, TEMPBR(J)
FORMAT (1X, 1A1, 1X,F10.4)

DO 38 I=1,NST

WRITE(6,646) BRGID, KNAME(I)
FORMAT (1X,2(12,1X))
IF(BRGID(J) .EQ.KNAME(I)) GO TO 39
CONTINUE

STATION NOT IN TABLE SPACE

IF(BRGID(J) .NE.KNAME(I) ) THEN
WRITE(6,873) NBR,BRGID,TM(BRGID(J))
FORMAT (/STATION NOT IN TABLE SPACE: NBR= ’,I2,’, ID= ’, 414,
* 2X,F12.3)

IRES=-1

GO TO 975

ENDIF

ISTA(J)=I

INVAR(J) =1/ (DTR*SIGX (I) ) #+2
BRG=TEMPBR (J) *DTR
BRGSV (J) =TEMPBR (1)
CBRG = DCOS (BRG)
SBRG = DSIN(BRG)

BEARING PLANE NORMAL VECTOR

COMPUTE THE BEARING VECTOR AS THE CROSS PRODUCT OF THE BEARING
PLANE NORMALS AND THE SITE VECTORS

BRNX(J) = CBRG #SING(I)-SBRG *SINT(I)*COSG(I)
BRNY (J) =-CBRG *COSG (I) -SBRG *SINT(I)*SING(I)
BRNZ (J) = SBRG *COST(I)

NXSX(J) = BRNY(J)*STAZ(I)=-BRNZ(J)*STAY(I)
NXSY(J)} = BRNZ (J)*STAX(I)-BRNX(J)*STAZ(I)
NXSZ (J) = BRNX(J)*STAY (I)-BRNY (J) *STAX(I)
CONTINUE

USE EXHAUSTIVE REJECTION FOR 10 OR LESS BEARINGS

USE SEQUENTIAL REJECTION FOR MORE THAN 10 BEARINGS

IF (NBR .LE.10) GO TO 50

CALL SEQ

GO TO 60

K = NBR

CALL EXH

IF (IRES .NE. 1) GO TO 800

NREJ IS THE NUMBER OF REJECTED BEARINGS

K IS THE NUMBER OF BEARINGS USED IN THE FIX

NREJ = NER -K

WRITE(6,699) TLAT,TLON

FORMAT (’ LAT=‘,F10.6,’ LON=’,P10.6)

TLON=-TLON

NORS=N e o
EORW=E ORIGINAL PACE 15
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319

800

950

975

WRITE(6,12) LTD,LTM,LTS,NORS,LND,LNM, LNS,EORW, SMA,SMI,ORIEN,AREA,
1 RADIUS

FORMAT(/, 15X, 'FIX’,37X,’S-MAJ AXIS S-MIN AXIS ORIEN ELLIPSE
1AREA’, /15X, 'BPE’,314,A1,2X,314,A1,8X,2(F6.1,5X) ,F5.1,4X,F8.1,
2/15X, ‘EQIVALENT CIRCULAR RADIUS=’,F6.1)

DO 309 IX=1,K

TUSE(ISTA (IL(IX))}=IUSE(ISTA(IL(IX)))+1

WRITE(6,307)

FORMAT (4 (/) , 15X, * BEARING UTILIZATION’,//,15X,’PDDG’,3X, ’ #SUBMITTE
1D’ ,4X, ' #USED’ , 4X, ' #REJECTED')

DO 303 IX=1,50

IF(ISUB{IX).EQ.0) GO TO 303

NUSE=ISUB(IX)~-IUSE(IX)

WRITE(6,302) KNAME(IX),ISUB(IX),IUSE(IX),NUSE

FORMAT(/, 15X, 15, 6X,I5,5X,15,7X,I5)

CONTINUE

NUSE=K+NREJ

WRITE(6,319) NUSE,K,NREJ

FORMAT (/, 15X, * TOTAL’ , 6X, I5,5X,I5,7X,15)

GO TO 550

IRES = 0

WRITE(6,14) IRES,IFLSH

FORMAT (1X,I1,I4,8X,’NO FIX’ )

CONTINUE

GO TO 900

CONTINUE

RETURN

END

SUBROUTINE EXH

CCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Cc

C
c
c

s

ETS UP FOR BEST POINT ESTIMATE (o]
(]

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

(o]

3

31
30
10

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DOUBLE PRECISTON NXSX,NXSY,NXS2

DOUBLE PRECISION INVAR

INTEGER SAVE

DIMENSION KLIM(10)

COMMON K,NST,WBRF, INVAR(50) , COST (50) ,
SING(50),COSG(50) ,STAX(50) ,STAY (50) ,STAZ(50) ,ISTA(50),
BRNX(50) , BRNY (50) , BRNZ (50) , IL({50) , SAVE (50) , SWT (50) ,
NXSX(50) ,NXSY (50) ,NXS2(50),

CHISQ(30) ,DTR,WT(50) ,TX,TY,TZ,E1,E2,E3,
c11,C22,C33,C13,€12,C23

COMMON/SOLN/SNKA, SSGNL, TLAT, TLON, RADIUS , AREA, TSOLN,

#IYDSN, IYR, MON, NDAY,NRS, NBR, IRES , NEVT, SMA , SMI , ORIEN
COMMON/KOUNTR/KNT1, KNT2 , KNT3, KNT4 , KNTHH , MTKNT , IDFTST, ISECOD
EQUIVALENCE (NCNT,NBR), (IERR,IRES)

DATA XLIM/3,3,3,3,3,3,4,4,5,5/

DO 330 IP=1,4

WRITE(6,31) STAX(IP),STAY(IP},STAZ(IP)
FORMAT (1X,3(F12.4,1X),’ IN EXH’)
CONTINUE

CONTINUE

DO 158 I = 1,K

N WN -
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[eXeNe]

aon

[ ReNe]

anon

c

10

15

20

21

25

26

800

30

C..
C..

[+

ano

anon nao

[sXpX2]

40
41

45
46

50

60

61

90
999

CONTINUE
PO 15 I = 1,K

IL(I) = I
CONTINUE
REJ = 1000.

IS STATION UNIQUE?

IS = ISTA(IL(1))

po 21 I = 2,K

IF(IS .NE. ISTA(IL(I))) GO TO 25
CONTINUE

GO TO 40

SET INITIAL WEIGHTS AND CALL BPE

CONTINUE

Do 26 I=1,K

WT(IL(I))=INVAR(IL(I))

CONTINUE

CALL BPE(2)

IS BEARING SET BETTER THAN PREVIOUS BEST?

CONTINUE

IF (WBRF .GE. REJ) GO TO 40

SAVE THIS CASE

DO 30 I=1,K

SAVE(I) = IL(I)

SWT (IL{I))=WT(IL(I))
CONTINUE

REJ = WBRP

THIS FORCES FFIX TO GET SOLN IN ONE PASS IF THERE
ARE THREE OR LESS BEARINGS IN THE FIX.

IF(K.LE.2) GOTO 60

FIND NEXT COMBINATION

I=K

CONTINUE

IF (IL(I) .LT. NBR -K+I) GO TO 45
IF (I .LE. 1) GO TO 50
I=1-1

GO TO 41
J =1

IL(I) = IL(J)+1
IF (I .GE. K) GO TO 20

J =1

I = I+l

GO TO 46
ALL COMBINATIONS COMPLETE

WBRF = REJ

IF (WBRF .LT. CHISQ(K-2)) GO TO 60

TRY SMALLER K

IF (K .LE. KLIM(NBR)) GO TO 90
K = K-1
GO TO 10

OUTPUT RESULTS

CONTINUE

po 61 I=1,K
IL(I) = SAVE(I)
WT(IL(I))=SWT{IL(I))
CONTINUE

CALL BPE(1)
IRES=1

CALL CONFID

GO TO 999

IRES = 2
RETURN

END
SUBROUTINE SEQ

173

OE??G??‘M;:L PAGE IS
CF PGOR QuaLITy



IMPLICIT DOUBLE PRECISION(A-H,O0-Z)
DOUBLE PRECISION NXSX,NXSY,NXSZ
DOUBLE PRECISION INVAR
INTEGER SAVE
COMMON K,NST,WBRF, INVAR(50) , COST(50),
SING(50),C0SG(50) , STAX(50) ,STAY (50) ,STAZ (50) , ISTA(50),
BRNX(50) , BRNY (50) , BRNZ (50} , IL(50) , SAVE (50) , SWT(50) ,
NXSX(50) ,NXSY (50) ,NXSZ (50},
CHISQ(30) ,DTR,WT(50),TX,TY,TZ,E1,E2,E3,
€11,C22,€33,€13,C12,C23
COMMON/SOLN/SNKA , SSGNL, TLAT, TLON, RADIUS , AREA, TSOLN,
*IYDSN, IYR, MON,NDAY, NRS, NBR, IRES, NEVT, SMA, SMI , ORIEN
COMMON/KOUNTR/KNT1, KNT2, KNT3 , KNT4 , KNTHH , MTKNT , IDFTST, ISECOD
EQUIVALENCE (NCNT,NBR), (IERR, IRES)
X = NBR
DO 15 I=1,K
IL(I) = I
15 CONTINUE
DO 20 I=1,K
WT(I) = INVAR(I)
20 CONTINUE
21 CONTINUE
CALL BPE(2)

(L W= S

TEST RESULTS

aonon

M= K-2
IF (K .GE. 33) GO TO 25
IF (WBRF .LT. CHISQ(M)) GO TO 50
GO TO 26

25 RM=M
XCHI = DSQRT(2.04WBRF)-DSQRT(2.0%RM-1.)
IF (XCHI .LT. 0.842) GO TO 50

26 CONTINUE

c NOT ACCEPTABLE - FIND BEARING TO REMOVE
IF (K .LE. (NBR+1)/2.) GO TO 900
EMAX = 0.
DO 30 I=1,K
IB = IL(I)

c FIND THE BEARING HAVING THE LARGEST WEIGHTED ERROR TO THE

c CURRENT BPE( X )
X = WT(IB)*(BRNX(IB)*TX+BRNY (IB)*TY+BRNZ(IB)#+TZ)*+2
IF(0.LT.TX#*NXSX (IB) +TY*NXSY (IB) +TZ*NXSZ (IB)) GO TO 60
X=2*WT (1B} -X

60 CONTINUE
IF (X .LE. EMAX) GO TO 30
EMAX = X

c SAVE THE INDEX OF THE BEARING TO BE REJECTED
IS =1

c WRITE(6,515) IS

515  FORMAT(1X, 'REJECTED BEARING ID=’,I4)

30 ~ONTINUE

X = K-1

c DELETE THE REJECTED BEARING FROM THE LIST
DO 35 I=IS,K
IL(I) = IL{I+1)

35 CONTINUE

IS STATION UNIQUE

a0n

I1 = ISTA(IL(1))

DO 40 I =2,K

IF (ISTA(IL(I)) .NE.I1) GO TO 21
40 CONTINUE

NO FIX

0oan

900 IRES = 2
GO TO 959

50 CONTINUE
CALL BPE(1)
IRES=1
CALL CONFID

999 RETURN

END

SUBROUTINE BPE(ITER)

ooteis HadToTor Tt 5207 ORIGINAL PAGE 12
DOUBLE PRECISION INVAR OF POOR QUALITY

INTEGER SAVE
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COMMON K,NST,WBRF, INVAR(50) ,COST(50),

SING(50) ,COSG(50) ,STAX(50) ,STAY (50) ,STAZ (50) ,ISTA(50),
BRNX(50) , BRNY (50) , BRNZ (50) , IL(50) , SAVE(50) ,SWT(50),
NXSX(50) ,NXSY (50) ,NXSZ (50},

CHISQ(30) ,DTR, WT (50) ,TX,TY,T%,E1,E2,E3,
c11,c22,c33,C13,€12,C23
COMMON/SOLN/SNKA , SSGNL, TLAT, TLON, RADIUS , AREA, TSOLN,

*IYDSN, IYR, MON,NDAY,NRS, NBR, IRES, NEVT, SMA, SMI, ORIEN
COMMON/KOUNTR/KNT1 , KNT2 , KNT3 , KNT4 , KNTHH , MTKNT , IDFTST,, ISECOD

EQUIVALENCE (NCNT,NBR), (IERR, IRES)
DATA RFN/1.0/
DO 100 KK=1,ITER
Cll= o.
c22= 0.
c33= 0.
c12= 0.
C13= 0.
c23= 0.
Do 6 I=1,K
J = IL(I)
BUILD THE C MATRIC AS THE PRODUCT OF THE 3 BY N MATRIX OF THE
WEIGHTED BEARING PLANE NORMAL VECTORS (BRNX,BRNY,BRNZ) AND
ITS TRANSPOSE
C11=C11+WT (J) *BRNX(J) ##2
C22=C22+WT (J) *BRNY (J) ##2
€33=C3I3+WT(J) *BRNZ (J) *#2
C12=C12+WT (J) *BRNX (J) *BRNY (J)
C13=C13+WT(J) *BRNX (J) *BRNZ (J)
C©23=C23+WT(J) *BRNY (J) *BRNZ (J)
6 CONTINUE
CALL EIGEN(C11,C22,C33,C12,C13,C23,E1,E2,E3,TX, TY,TZ)
c WRITE(6,509) C11,C22,C33
509 FORMAT(1X,’Cl11,C22,C33= *,3(2X,F16.4))
c WRITE(S,509) €12,Cl13,C23
c WRITE(6,512) TX,TY,TZ,El
512 FORMAT (1X, *X,¥,2=",4(2X,F12.7))
c WRITE(6,513) E1
cs13 FORMAT(’ #= ’,F12.7)

(LI RPN S

anon

Cc
[+ NEED ANTIPODE?
C

ICT = 0
DO 10 I=1,K
J = IL(I)
IF (0 .LE. TXANXSX(J)+TY*NXSY(J)+TZ*NXSZ(J)) ICT = ICT+1
10 CONTINUE
c IF ICT IS K ALL BEARINGS ARE FORWARD
c IF ICT IS 0 ALL BEARINGS ARE BACKWARD
IF (K .LE. 2*ICT) GO TO 11
TX = -TX
TY = -TY
TZ = -T2
11 CONTINUE
DO 20 I= 1,K
J = IL(I)
L = ISTA(J)
c TDOTTS IS THE COSINE OF THE DISTANCE OF THE BPE TO THE SITE
TDOTS = TX*STAX(L)+TY*STAY (L)+TZ*STAZ (L)
IF (TDOTS .GT. .99999) TDOTS = .99999
IF (TDOTS .LT. -.99999) TDOTS = -.99999

INSERT RANGE WEIGHTING FUNCTION HERE

NOTE RFN=1.0 GIVES BEST (SMALLEST) ERROR ELLIPSE FOR LLP
THE COMPLICATED RFN RELATION ACCOUNTS FOR INCREASED VARIANCE
IN THE BEARINGS DUE TO SKY WAVE EFFECTS WHEN SOLN CLOSE TO
THE STATIONS (HIGH INCIDENCE ANGLE TO IONOSPHERE)- THIS IS

AN IMPORTANT CONSIDERATION IN HF DIRECTION FINDING, NOT HERE.

RGE = 14.444%DACOS (TDOTS)
WRITE(6,222) RGE,TDOTS
FORMAT (1X, ‘RGE AND TDOTS ARE ’,2F12.3)
IF (RGE .LT. 10.) GO TO 137
IF (RGE .LT. 1.) GO TO 137
RFN = .285714+RGE*.0714256
GO TO 138
137 RFN = 3.-RGE*(.402-RGE*.0204)

MODIFY THE WEIGHTS BY THE RANGE TO THE CURRENT BPE
SEE STANSFIELD(1947) FOR WEIGHT

HOQOOOOOOGSO()QO 0NN noOn
N
N

LY WI(J) = INVAR(J)/(RFN#424(1.-TDOTS*#2))
20 CONTINUE
100 CONTINUE

ORFG;NA1 F‘" Pl
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
[o]

[
[o]
c

c

WBRF = E1
IF (K .EQ. ICT) RETURN
IF (0 .EQ. ICT) RETURN
WBRF = 2+K

RETURN

END

SUBROUTINE EIGEN(D11,D22,D33,D12,D13,D23,E1,E2,E3,TX,TY,TZ)

c

THIS SUBROUTINE COMPUTES THE SMALLEST EIGENVALUE OF THE MATRIX C C
THE EIGEN SUBROUTINE USES NEWTON ITERATION

13

107
1

c
c
o
(o]

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCeccCeccce

c

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
Cl1 = D11

C22 = D22

C33 = D33

Cl12 = D12

C13 = D13

€23 = D213

B = C11+C22+C33

C = Cl1%(C22+C33)+C22*C33~(CLl2#*2+C23**24C13IW¥2)

A=C12/C11

D=C11#*(C22-C12%*A)*(C33~C13I*#C13/C11~((C23~C13#*A) *%2)

1 /(C22-C12*A))
1F(D.GT.0) GO TO 13
El=0
RETURN
CONTINUE
X=0
DO 10 I=1,10
FX=X#*3-B#X#*#2+C*X-D
FP=34X*%2-24BAX+C
AN=X-FX/FP
IF(XN.EQ.0) GO TO 12
IF(ABS ( (XN-X) /XN) .LT..0001) GO TO 12
X=XN

10 CONTINUE

2

10

20

50

WRITE(6,107)

FORMAT(’ 10 ITERATIONS INSUFICIENT TO CONVERGE’)

El=XN

CALL EVECT{E1,D11,D22,D33,D12,D13,D23,TX,TY,TZ)

RETURN
END

SUBROUTINE EVECT(E1l,C11,C22,C33,C12,C13,C23,TX,TY,TZ)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

THIS SUBROUTINE COMPUTES THE EIGENVECTOR ASSOCIATED WITH THE C
[

EIGEN VALUE El

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
D1 = (C11-E1)#*(C22-E1)-Cl2##2

IF (ABS(Dl) .LE. .0001) GO TO 10
X = Cl3*(E1-C22)+C12%C23

Y = (E1-Cl1)*C23+C13*C12

Z = D1

GO TO 50

D2 = (Cl1-E1)*(C33-E1)~Cl3+#2

IF (ABS(D2) .LE. .0001) GO TO 20
X = (E1-C33) *C12+C13*C23

Y = D2

Z = (E1-Cl1)#*C23+C13#*C12

GO TO 50

X = (C22-E1)*(C33-E1)~C23%%2

Y = (E1-C33)*C12+C23*C13

Z = (E1-C22)*C13+C23*C12

TEMP = DSQRT(X##2+Y##2+Z442)

TX = X/TEMP

TY = Y/TEMP

TZ = Z/TEMP

RETURN

END

SUBROUTINE CONFID

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceee

[eRe N XN NP N?]

COMPUTES THE CONFIDENCE ELLIPSE FOR GIVEN DF ANGLE ERROR
WHERE THE ANGLE STANDARD DEVIATION IS IN DEGREES
RETURNS ERROR RADIUS AND AREA FOR THIS ELLIPSE.
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oaon

10

c22

250

15

2

IMPLICIT DOUBLE PRECISION(A-H,0-2)
DOUBLE PRECISION NXSX,NXSY,NXSZ
DOUBLE PRECISION INVAR
INTEGER SAVE

COMMON K,NST, WBRF, INVAR(S0) ,COST(50) ,

1 SING(50),COSG(50),STAX(50),STAY(50),STAZ(50),ISTA(50),
2 BRNX(50),BRNY (50) ,BRNZ(50) ,IL(50),SAVE(50),SWT(50),

3 NXSX(50),NXSY(50),NXSZ(50),
4 CHISQ(30),DTR,WT(50),TX,TY,TZ,E1,E2,E3,
5 C11,€22,C33,C13,C12,C23
COMMON/SOLN/SNKA , SSGNL, TLAT, TLON, RADIUS , AREA , TSOLN,
*IYDSN, IYR,MON, NDAY,NRS, NBR, IRES,NEVT, SMA, SMI, ORIEN
COMMON/KOUNTR/KNT1, KNT2 , KNT3 , KNT4 , KNTHH, MTKNT,, IDFTST, ISECOD
FACT = EARTH RADIUS * DSQRT(-2 LN (1-P))

FACT IS IN UNITS OF NAUT. MI.; FOR P=.5, FACT=4055
FACT= 7391 FOR P=0.9

DATA FACT /4055./

MISS=10000.

TLAT = DASIN(TZ)/DTR

IF (ABS(TX).LE. 1.E-6) GO TO 10

TLON = ATAN (TY/TX)/DTR

IF(TX .LE. 0.) TLON = TLON + 180.

IF (TLON .GT. 180.) TLON = TLON - 360.

GO TO 15

TLON = 30.

IF (TY .LE. 0.) TLON = =-90.
CONTINUE

Cll = 0.

c22 = 0.

C33 = 0.

€12 = 0.

C13 = 0.

C23 = 0.

DO 30 I=1,K
J = ISTA(IL(I))
COMPUTE THE BEARING PLANE NORMAL VECTORS (BX,BY,BZ) TO THE BPE
BX = STAY(J) *TZ-STAZ (J) *TY
BY = STAZ(J)*TX -STAX(J)*TZ
BZ = STAX(J)#*TY - STAY(J)*TX

WRITE(6,222) COF,BX,BY,BZ,J,STAX(J),STAY(J),STAZ (J),TX,TY,TZ

FORMAT (/1X, COF ETC ’,4F8.4,12,2X,6(F8.4,2X))
BSQAR=BX*#2+BY##2+BZ##2
IF (BSQAR.EQ.0.) THEN

IRES=0
GOTO 250

ENDIF
COF = WT(IL(I})/BSQAR
COMPUTE THE WEIGHTED C MATRIX
Cl1 = C11+COF*BX**2
C22 = C22+COF*BY#**2
C33 = C33+COF*BZ**2
C12 = C12+COF*BX*BY
€13 = C13 + COF*BX*BZ
C23 = C23 + COF*BY#*BZ

30 CONTINUE

20

22

B = (C114+C22+C33)/2.

C = C11%(C22+C33)+C22#C33-(C124#2+C1I**2+C234%2)
D = DSQRT(B**2-C)

E2 = B-D

E3 = B+D

COMPUTE THE CONFIDENCE REGION PARAMETERS
SMA = FACT/DSQRT(E2)

SMI = FACT/DSQRT(E3)

CALL EVECT(E2,C11,C22,C33,C12,C13,C23,X,Y,2)
IF ((X*TY-Y*TX) .GT. 0.) Z = -2

TEMP = 2Z/DSQRT(1.-TZ**2)

IF (1. .GE. ABS(TEMP)) GO TO 20

ORIEN = 0.

GO TO 22

CONTINUE

ORIEN = DACOS (TEMP)/DTR

CONTINUE

AREA = 1.14159#*SMA*SMI

CIRCULAR REGION APPROXIMATION (NOT OUTPUT IN THIS VERSION)
RATIO=(SMI/SMA)

RADIUS=SMA* (. 29294 % (RATIO**2) -. 063163 *RATIO+.76996)

RETURN

END
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SUBROUTINE NETFIX(I1,AZ1,I2,AZ22,XTL,XTLO)
CCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

cc cc
CC THIS PROGRAM COMPUTES A TWO STATION FIX cc
cc cc
CC INPUT: XSL1 =LAT OF STATION 1 (DEGREES) ce
cc XSLO1l =LON OF STATION 1 (DEGREES) ce
cc AZ1  =OBSERVED BEARING (DEGREES) cc
cc ce
cc XSL2 =LAT OF STATION 2 (DEGREES) cc
ce XSLO2 =LON OF STATION 2 (DEGREES) cc
cc AZ2 =OBSERVED BEARING (DEGREES) cc
cc cc
CC OUTPUT: XTL =LAT OF TARGET (DEGREES) cc
cc XTLO =LON OPF TARGET (DEGREES) cc
cc cc
cc MODIFIED FOR USE ON EADS cc
cc JAN 1987 cc

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
(o]

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION LAD(4),LAM(4),LAS(4),LOD(4),LOM(4),L0S(4)
DATA LAD/34.,35.,35.,34./

,LAM/38.,23.,50.,43./

,LAS/57.,57.,15.,00./

,LOD/86.,86.,87.,87./

,LOM/40.,04.,26.,52./

,10S/09.,37.,38.,54./
XSL1=LAD(I1)+(LAM(I1)+(LAS(I1)/60.))/60.
XSLO1=LOD(I1)+(LOM(I1)+(LOS(I1)/60.))/60.
XSL2=LAD(I2)+(LAM(I2)+(LAS(I2)/60.))/60.
XSLO2=LOD(I2)+(LOM(I2)+(LOS(I2)/60.))/60.

[oH-NelN- N4

c WRITE(6,901) XSL1,XSLO1,AZ1,XSL2,XSLO2,AZ2
C901 FORMAT(1X, 'NETFIX...XSL1l,XSLO1,AZ1,XSL2,XSLO2,A22 ’,6(F10.4,1X))
PI=3.14159265359
RAD=57.2957795131
XSL1=XSL1/RAD
XSLO1=XSLO1/RAD
XSL2=XSL2/RAD
XSLO2=XSLO2/RAD
c
C COMPUTE RANGE (RADIANS) BETWEEN SITES
c
5 AZ1=AZ1/RAD
AZ2=AZ2/RAD

WRITE(6,19) XSL1,XSLOl,XSL2,XSLO2,AZ12,RN
19 FORMAT (1X, 'BEFORE AZRN ’,6F12.4)

CALL AZRN(XSL1,XSLO1,XSL2,XSLO2,AZ12,RN)
CALL AZRN{XSL2,XSL02,XSL1,XSLO1,AZ21,RN)

COMPUTE INCLUDED ANGLES

[ Xe X2l

ANG1=DABS (AZ12-AZ1)
IF(ANG1.GT.PI) ANG1l=2.*PI-ANG1l
ANG2=DABS (AZ21-AZ2)
IF(ANG2.GT.PI) ANG2=2.*PI-ANG2

COMPUTE 1/2 SUM AND DIFFERENCE ANGLES

noon

SUM=0. 5% (ANG2+ANG1)
DIFF=0.5% (ANG2-ANG1)

SET UP FOR NAPIER ANALOGY SOLUTION

a0on

SINS=DSIN (SUM)
SIND=DSIN (DIFF)
COSS=DCOS (SUM)
COSD=DCOS (DIFF)
TANR=DTAN (0. 5*RN)

COMPUTE LENGTH OF SIDE OPPOSITE STATION 2
ALN=DATAN (TANR*SIND/SINS) +DATAN (TANR*COSD/COSS)

COMPUTE LOCATION OF TARGET

noa oan

CALL LOCLO(XSL1,XSLO1,ALN,AZ1,XTL, XTLO)
XTL=XTL*RAD
XTLO=XTLO*RAD
WRITE(6,46) XTL,XTLO
6 PORMAT (1X, 'NETFIX. .XTL,XTLO /,Fl12.7,2X,F12.7) .

=D OF POOR QUALITY
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SUBROUTINE LOCLO (XLA,XIOT,RT,AT, XLATD, XLOTD)

LLL([(lll(l'('(ll(l(!l(lllll(‘(l'lllllll(l(l(l'l‘ll((llll(
cc cc
CC LOCLO COMPUTES THE LATITUDE AND cc
CC LONGITUDE OF A POINT GIVEN: cc
cc XLA =LAT OF REFERENCE PT(RAD cc
cc XLo =LONG OF REF PT(RAD) cc
cc RT =GCB FROM REF PT TO TARGET cc
ccC AT =OBSERVED AZIMUTH (RAD) cc
CC OUTPUT: XLATD =LAT OF PT IN QUESTION (RAD) ccC
cc XLOTD =LON OF PT IN QUESTION (RAD) cc
cc cc

CCCCCCCeececeececeecececececcccceccccccccccccccceccceccccice

c
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PI=3.1415926535
XAT=AT
XLO=-XLOT
IF (AT.GT.PI) XAT=DABS(2.*PI-AT)
XLARL=(PI/2.)~XLA

XLATL=DACOS { DCOS ( XLARL) #DCOS (RT) +DSIN (XLARL) *DSIN (RT) *DCOS (XAT))

IF(XLATL.LT.0.) XLATL=PI+XLATL
XLATD=({PI/2.)-XLATL

BETA1=ATAN2 ( (DSIN(O.5#* (RT-XLARL) ) #DCOS (. 5#XAT) ) , (DSIN(.5%

C (RT+XLARL)) *DSIN(.5*XAT)))

BETA2=ATAN2 ( (DCOS (. 5* (RT~XLARL) ) *DCOS ( . 5#XAT) ) , (DCOS(.5*

C  (RT+XLARL))*DSIN(.5*XAT)))
GAM=BETA1+BETA2
IF(GAM.LT.0.0) GAM=(2,*PI)+GAM
XLOTD=XLO+GAM
IF(AT.GE.PI) XLOTD=XLO-GAM
IF (XLOTD.LT.~PI) XLOTD=(2.#*PI)-XLOTD
IF (XLOTD.GT.PI) XLOTD=XLOTD-(2.*PI)
ABVAL=DABS (XLOTD) +DABS (XLO)

IF ( ( (XLOTD*XLO) .LT.0.) .AND. (ABVAL.GT.PI)) XLOTD=2.*PI-XLOTD

IF(XLOTD.GT.2.*PI) XLOTD=2.#*PI-XLOTD
RETURN

END

SUBROUTINE AZRN(XSL,XSLO,XTL,XTLO,AZ,R)
CCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
cc cc
CC THIS ROUTINE COMPUTES THE RANGE AND AZIMUTH CC
CC FROM ONE GEOGRAPHICAL COORDINATE TO ANOTHER CC
cc cC

cc INPUT: XSL =LAT OF POINT S (RADIANS) cc
cc XSLO =LON OF POINT S (RADIANS) cc
cC XTL =LAT OF POINT T (RADIANS) cC
cc XTLO =LON OF POINT T (RADIANS) cc
cc cc
cC OUTPUT: R =RANGE (RADIANS) cC
cc AZ =AZIMUTH (RADIANS) cc
cc cc

CCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCceCeCCCCCCCCCCCCCC

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
INITIALIZE EAST WEST FLAG

WRITE(6,33) XSL,XSLO,XTL,XTLO,AZ,R
PORMAT (1X, AZRN INPUT.. ‘,6F12.6)
IEAWE=0

PI=3.1415926535

WLOOOO

w

A : POLAR ANGLE OF SITE AND TARGET

(s XeXr]

A=DABS (XSLO-XTLO)

00

BRANCH IF A IS GREATER THAN PI RADIANS
IF(A.LE.PI) GO TO 10
A=2,*PI-A
IEAWE=1
DS = DISTANCE (RAD) FROM SITE TO NORTH POLE
0 DS=PI/2.-XSL

DT=DISTANCE (RAD) FROM TARGET TO NORTH POLE

on0aOra0nN

DT=PI/2.-XTL

AZl = .5%(AZ-B)

non
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AZ1=ATAN2 (DCOS(.5*A) *DSIN(.5* (DT-DS) ) ,DSIN(.5*A)*DSIN(.5* (DT+DS)))

c
C AZ2 = ,5%(AZ+B)
AZ2=ATAN2 (DCOS(.5*A) *DCOS(.5*(DT-DS) ) ,DSIN(.5*A) *DCOS(.5* (DT+DS)))
AZ=AZ1+AZ2
(o]
C USE LAW OF COSINES FOR SIDES
c
R=DACOS (DCOS (DS} *DCOS (DT) +DSIN(DS) *DSIN(DT) *DCOS (A) )
[of
C DISTANCE CANNOT BE NEGATIVE
C
IF(R.LT.0.) R=-R
(o
C DETERMINE WHICH WAY TARGET IS FROM SITE
(o
IF((IEAWE.EQ.1 ).AND. (XSLO.LT.XTLO}) AZ=2.*PI-AZ
IF((IEAWE.EQ.0) .AND. (XTLO.LT.XSLO)) AZ=2,4PI-AZ
c
C AZ CANNOT BE GT 2*PI OR LT O.
[o4
IF(AZ.GE.2.*%PI) AZ=AZ-2.*PI
IF(AZ.LT.0.) AZ=-AZ
c
C CONVERT RADIANS TO KM
c
AZ=2.+PI-AZ
RETURN
END

SUBROUTINE YDDMY (SYD,DAY,MON, YR)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeee

(o] [
c CONVERT YYDDD (SYD) DAY,MONTH,YEAR (o4
[of CONVERT YYDDD TO DAY, MONTH, YEAR (VALID FROM 1501 TO 199%) C
[+ DAY = (I) OUTPUT DAY (o4
c MON = (I) OUTPUT MONTH Cc
o] YR = (I) OUTPUT YEAR C
[o] (o]
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
[of

IMPLICIT INTEGER (A-3Z)
DIMENSION DN(12,2)

DATA DN/31,59,90,120,151,181,212,243,273,304,334,365,
* 31,60,91,121,152,182,213,244,274,305,335,366/

a0

YY=INT(SYD/1000)

DDD=MOD(SYD, 1000)

ILY=1

IF (MOD(YY,4).EQ.0) ILY=2

DO 20 ID=1,12

IF (DDD.LE.DN(ID,ILY)) GOTO 21
20 CONTINUE

21 MON=ID
DAY=DDD
IF (MON.GT.1) DAY=DDD-DN(MON-1,ILY)
YR=YY

c WRITE(6,100) SDY,MON,DAY, YR

100  FORMAT(1X, 'YYDDD’,4IS)
RETURN
END

180

ORIGINAL PAGE g
OF POOR QUALITY



APPENDIX C: CLUSTER ANALYSIS SOFTWARE

The cluster analysis software consists of programs to read the lightning data from
a disk file, convert the lightning locations from spherical earth coordinates to rectan-
gular coordinates within a user defined region from a user defined reference point,
compute an extrapolation vector, compute seed points for input to the K-means algo-

rithm, and write the results to an output file.
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[a{efedelefalatafalelelel alel ol e edaf ol ol e afal el o el el e od o o] 00 0] o 0 03 a0 0 5 0 0 0 00 0 S 1 0 0 ) e 2 o 0 0 0 ]
CC CLUSTERING ALGORITHM FOR LTG DATA AND FCSTS OF Y/N AHEAD cC

cc GRID. READ FROM STAT2A WITH X,Y DATA, NOT LDATA cc
| 0 0t 0 4 0 ] 04 g i ] 0 ¢ 0 4 6 0 ] 0 0 0 ] Ut 4 04 0 0 o ] i @ o {0 {0 O 0 ] 0 ] 0 0 0 O 4
c

IMPLICIT DOUBLE PRECISION (A-H,0-~Z)
COMMON/SOLN/NEVT, TSOLN, IYR, MON,NDAY, TLAT, TLON, SNKA, SSGNL, NRS,
* SMA,SMI,ORIEN, RADIUS, AREA

COMMON/SETGRD/NROW, NCOL, IMIDPT, IRADII, INCR, X, Y,AZ
COMMON/CM1/1GRID(50,50,40) ,LNUM(100,100) ,SGRID(100,100),

hd SNUM(100,100) ,AGRID(100,100) ,ANUM(100,100) ,A(8000,2)
INTEGER SNUM, ANUM

INTEGER IFRQ, IPRINT, IWT, KK, LDCM, LDSWT, LDX, MAXIT ,JCOL, NOBS , NV, NVAR
DIMENSION IN2(5),CBRG2(4),XBAR(40),YBAR(40)

PARAMETER (IFRQ=0, IPRINT=0,IWTw0,6 KK=6, K MAXITw10,JCOLm2,

. NOBS=62,NV=2 , NVAR=2 , LDCM=KX, LDSWT=KK, LDX=NOBS)
INTEGER IC({NOBS),IND(NVAR),NOBl,NV1

REAL CM (KK, NVAR) ,NC (KK) , SWT (KK, NVAR) , WSS (KK) , SMTRIX (NOBS , NV)
CHARACTER ILABEL(NOBS), ICHR(26)

EXTERNAL KMEAN, WRIRN, WRRRN

DATA ICHR/IAI,IBI'ICI'IDI'IEI’Ipl,Icl'IHI,'I',IJ’,IKI,ILI,IH',
.INIIIOI'IPI'IQIIIRIIISI'ITI'lUI"vl'lwlllxl'lyl'lz'/

DATA IND/1,2/

DATA CM(1,1),CM({1,2),CM(2,1),M(2,2)/10.,60.,0.,0./

DATA CM(3,1),CM(3,2),M(4,1),M(4,2)/20.,0.,-20.,-20./

DATA CM(5,1),0(5,2),CM(6,1),CM(6,2)/-70.,-20.,-50.,-30./

DATA FL2LAT,FL2LON,DTR/0.604817,1.515038,0.017453/

DATA CP2ZLAT,CP2LON/0.608223,1.515513/

DATA BNALAT,BNALON/0.632682,1.510932/

DATA CPALAT,CPALON/0.606008,1.515445/

DATA ATIME, BTIME,BTIME2/223000.,223500.,223443./

DATA ALAT, BLAT,ALON,BLON/34.0,36.5,86.0,90./

[o
C.. ADD SYSTEM MOTION VECTOR HERE
c.. DT=0 GIVES OBSERVED DATA IF DX,DY USED THEN
c.. DT WILL BE 5-MIN TRANSLATION OF DATA AND CLUSTERS, DX,DY ARE
c.. SYSTEM DISPLACEMENT VECTORS FOR 5-MIN INTERVAL FOR EACH DT
c.. DT=2 IS 10 MIN ETC...
c
ISTOP=1
TINCR=5000.
KZ=1
DT=0.
DX=4.,4520T

DYm-7.95+0T

DO 5 LC=1,KK
CM(LC, 1) =CM(LC, 1) +DX
CM(LC, 2)=CM(LC, 2)+DY

s CONTINUE

XB=0.

YB=0.

IDAY=15

KNUMB=0

IRADII=200

INCR=5

NROW= (IRADII*2)/INCR

NCOL=NROW
IMIDPT=NROW/2
C **+ READ IN NEXT RECORD FROM DISK FILE STAT2A_.

0 READ(10,5000) NNUMB, TSOLN,TLAT,TLON,X,Y
CHECK FOR DAY OF INTEREST

IF (NDAY.NE.IDAY) GOTO 10
IP(TSOLN.GE.ATIME.AND.TSOLN.LT.BTIME.AND.NDAY.EQ. IDAY) THEN
IF (TSOLN.GE.BTIME2) GOTO 37
IF (TSOLN.LT.ATIME) GOTO 10

WRITE(6,5000) NNUMB, TSOLN,TLAT,TLON,X,Y

FORMAT (I6,2X,5(F12.5,1X))
IF (TSOLN.GE.BTIME) GOTO 37
IF(TLAT.GE.ALAT.AND.TLAT.LT.BLAT.AND.TLON.GE.ALON.AND.TLON.

* LT.BLON)THEN

aONOOEoN

w1
o
Q
o

CALL AZRN IF NEED CONVERSION OF LAT/LON TO (X,Y) FROM REF. POINT

CALL AZRN(FL2LAT, FL2LON, TARLT,TARLO,AZ,R)
IF(R.LE.IRADII) THEN

IF FORECASTING SYSTEM MOVEMENT, ADD TO X,Y BY DX,DY
X=SIN(AZ) *R+DX

Y=COS (AZ) *R+DY
X=SIN(AZ) *R

anNnaoaonNnooOnNnNnoOnNaOn
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c ¥Y=COS (AZ) *R
c IF(Y.LE.100) GOTO 10
X=X+DX
¥Y=Y+DY
SMTRIX (KNUMB+1,1)=X
SMTRIX (KNUMB+1,2) =Y
XB=XB+X
YB=YB+Y
KNUMB=KNUMB+1
GOTO 10
60 CONTINUE
WRITE(6,2211) NOBS,NVAR,LDX,IFRQ,IWT, (IND(J),J=1,NVAR),
* KK, MAXIT

2211 FORMAT (1H1,1X, ’NOBS ETC...’,918/)
[of

C.. ASSEMBLE 5 MIN GRIDS

[+

37 DO 40 I=1,KNUMB
JL=20+INT (SMTRIX(I,1)/10.)
IL=20-INT(SMTRIX(I,2)/10.)
LGRID(IL,JL,KZ)=LGRID(IL,JL,KZ)+1
WRITE(6,2882) I,KNUMB,IL,JL,K2
WRITE(6,2883) (SMTRIX(I,JJ),JJ=1,2),LGRID(IL,JL,K2)
2882  FORMAT(1X, ’I,KNUMB, IL,JL,KZ,SMTRIX,LGRID’,5(I4,2X))
2883  FORMAT(1X,2F8.2,2X,16)
40 CONTINUE

o
C.. FIND MEAN X,Y OF DATA SET FOR SYSTEM MOTION VECTOR

c
XBAR (KZ) =XB/KNUMB

YBAR (K2 ) =YB/KNUMB
WRITE(6,2900) ATIME,BTIME,KNUMB,KZ,XBAR(KZ),YBAR(KZ),DX,DY,DT
DO 80 IJ=1,40
c JI=40-IT+1
WRITE(6,2902) IJ,(LGRID(IJ,JJ,KZ),JJ=1,40)
c WRITE(6,2902) JI, (LGRID(JI,JL),JL=1,40)
80  CONTINUE
WRITE(6,2904) (I,I=1,40)
2904  FORMAT(3X,40(1X,X2))
c IF(ISTOP.EQ.1) STOP
2900 FORMAT(1H1/1X,’INTERVAL= ’,F10.2,2X,F10.2,’ KNUMB= ’,1I6,
#¢ KZ=’,I2,’ XBAR SYSTEM=’,F8.2,’ YBAR SYSTEM=’,F8.2/
%/ DX=’,F8.2,’ DY=',F8.2,° DT=‘,F8.2/)
2902 FORMAT (1X,I2,40(1X,I2))
WRITE(6,1299) NOBS,XBAR(KZ),YBAR(KZ),DT,DX,DY,ATIME, BTIME
1299 FORMAT(1X, ’‘NOBS FOR SYSTEM=’,I4,2X,’XBAR= ’,F10.2,2X,’YBAR= ',
* F10.2/2X,’DT =/,F8.2,2X,’DX= ’,F8.2,2X,’D¥= ’,F8.2/2X, ' INTERVAL',
*F12.3,2X,F12.3/1H1/)

DO 2213 JK=1,KK
WRITE(6,2215) JK, (CM(JK,JJ) ,JI=1,2)
2215 FORMAT (1X, ‘SEED ’,I4/1X,2(F10.2,2X))
2213 CONTINUE
c IF(NOBS.NE.-1) STOP

CALL KMEAN (NOBS, JCOL, NVAR, SMTRIX, LDX, IFRQ, IWT, IND, KK, MAXIT,
* CM, LDCM, SWT, LDSWT, IC, NC, WSS)
CALL WRRRN (‘CM’,KK,NVAR,CM,LDCM, 0)
CALL WRRRN (’SWT’, KK, NVAR, SWT, LDSWT, 0)
CALL WRIRN(’IC’, 1,NOBS,IC, 1, 0)
CALL WRIRN(’NC’, 1,KK,NC, 1, 0)
CALL WRRRN(’WSS’,1,KK,HWSS,1,0)
DO 2230 I=1,NOBS
TLABEL(I)=ICHR(IC(I))
c WRITE(6,2244) I,IC(I),ICHR(IC(I)),ILABEL(I)
C2244 FORMAT (2X,I4,2X,’ IC=’,I4,Al,2X,Al)
2230 CONTINUE
WRITE(6,6000)
6000 FORMAT (1H1/6X, ‘I’ ,6X,’X’,10X, ‘Y’ ,6X, ’CLUSTER’//)
DO 4000 I=1,NOBS
WRITE(6,4005) I, (SMTRIX(I,J),J=1,NV),IC(I),ILABEL(I)
WRITE(11,4005) I, (SMTRIX(I,J),J=1,NV),IC(I),ILABEL(I)
4005 FORMAT (1X,16,2X,2F10.2,2X,I4,2X,Al)
4000 CONTINUE
KZ=KZ+1
XB=0.
YB=0.
ATIME=ATIME+TINCR
BTIME=BTIME+TINCR
STOP
993  STOP
END
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cc

PROGRAM AZRN

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
THIS ROUTINE COMPUTES THE RANGE AND AZIMUTH CC
FROM ONE GEOGRAPHICAL COORDINATE TO ANOTHER CC

cc
cc
cC

cc
cc
ccC
cC
cC
ccC
cc
cc

cc

INPUT: XSL =LAT OF POINT S (DEGREES) cc
XSLO =LON OF POINT S (DEGREES) cc

XTL =LAT OF POINT T (DEGREES) cc

XTLO =LON OF POINT T (DEGREES) cc

cc

OUTPUT: R =RANGE (KM) cc
AZ =AZIMUTH (RADIANS) cc

cc

CCCeCeeeeeeceeecceeececcececcecceeccccceccecccccccccecce

(o

cC

c
c

(e NeNel

[eNe] ao0n oOnon [eXeNe] non [eNeXe] OOOSOOO oo

ann

SUBROUTINE AZRN (XSL,XSLO, XTL, XTLO,AZ,R)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
INITIALIZE EAST WEST FLAG

IEAWE=0
PI=3.1415926535

A : POLAR ANGLE OF SITE AND TARGET
A=DABS (XSLO-XTLO)

BRANCH IF A IS GREATER THAN PI RADIANS
IF(A.LE.PI) GO TO 10
A=2.*PI-A
IEAWE=1

DS = DISTANCE (RAD) FROM SITE TO NORTH
DS=PI/2.-XSL

DT=DISTANCE (RAD) FROM TARGET TO NORTH
DT=PI/2.-XTL

AZ1 = .5%*(AZ-B)
AZ1=ATAN2 (DCOS (. 5*A) *DSIN(.5*% (DT-DS

AZ2 = .5%(AZ+B)
AZ2=ATAN2 (DCOS (. S*A) *DCOS ( . 5* (DT-DS
AZ=AZ1+AZ2

USE LAW OF COSINES FOR SIDES
R=DACOS (DCOS (DS} *DCOS (DT) +DSIN(DS) *

DISTANCE CANNOT BE NEGATIVE

IF(R.LT.0.} R=-R

POLE

POLE

)} ,DSIN(.S*A)*DSIN(.5* (DT+DS)))

}),DSIN(.5%A)*DCOS(.5#* (DT+DS)))

DSIN (DT} 4DCOS (A))

DETERMINE WHICH WAY TARGET IS FROM SITE

IF((IEAWE.EQ.1 ).AND. (XSLO.LT.XTLO)
IF((IEAWE.EQ.0) .AND. (XTLO.LT.XSLO))

AZ CANNOT BE GT 2*PI OR LT O.

IF(AZ.GE.2.%PI) AZ=AZ-2.*PI
IF(AZ.LT.0.) AZ=-AZ

CONVERT RADIANS TO KM

AZ=2.*PI-AZ
R=R*6370.
RETURN

END

) AZ=2.*PI-AZ
AZ=2.*PI-AZ
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLLLLLLLLLLLLuLLLLLLLuLLbLLLLuLLLL

CC SEED ALGORITHM FOR LTG DATA AND FCSTS OF Y/N AHEAD cc
cc Program GRID21 ce
CCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCeCecceeeeecccecccecceccrecet
[o
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMHON/SOLN/NEVT,TSOLN,IYR,HON,NDAY,TLAT,TLON,SNKA,SSGNL,NRS,
* SMA, SMI,ORIEN, RADIUS,AREA
COMMON/SETGRD/NROW,NCOL,IHIDPT,IRADII,INCR,X,Y,AZ
COMMON/CHl/LGRID(SO,SD,40),LNUH(lOO,lOO),SGRID(lOO,lOO),
* SNUH(lOO,lOO),AGRID(lOO,lOO),ANUH(loO,lOO),A(BOOO,Z)
INTEGER SNUM, ANUM
INTEGER IFRQ,IPRINT,IWT,KK,LDCH,LDSWT,LDX,MAXIT,JCOL,NOBS,NV,NVAR
DIMENSION INZ(S),CBRcz(d),xBAR(AO),YBAR(40),LSEED(40,40,40)
INTEGER IC(8000),IND(2),NOB1,NV1
REAL CM(BO,Z),NC(BO),SwT(BO,Z),WSS(BO),SHTRIX(SOOO,Z)
EQUIVALENCE (LDCM,KK),(LDSWT,KK),(LDX,NOBS)
EXTERNAL KMEAN,WRIRN, WRRRN
DATA IND/1,2/
DATA IFRQ,IPRINT,IWT,HAXIT,JCOL,NV,NVAR/O,o,0,10,2,2,2/
(o} DATA CH(l,l),CH(1,2),CH(2,1),CH(2,2)/-152.2,-49.3,-118.8,—27.2/
(ol DATA CH(3,1),CH(J,Z),CH(A,l),CH(4,2)/-89.0,-5.3,-49.9,-20.1/
[ DATA CM(5,1),CH(S,Z),CM(6,1),CH(6,2)/-72.2,15.1,-54.3,53.8/
o DATA CH(7,1),CH(7,2),CM(8,1),CH(8,2)/-23.2,119.5,29.5,129.0/
DATA FLZLAT,FLzLON,DTR/O.604317,1.515038,0.017453/
DATA CP2LAT,CP2LON/0.608223,1.515513/
DATA BNALAT, BNALON/O.632682,1.510932/

DATA
DATA
DATA

CP4LAT,CP4LDN/0.606008,1.515445/
ATIHE,BTIHE,BTIHE2/214500.,215000.,223443./
ALAT,BLAT,ALON,BLON/34.0,36.5,86.0,90./

c
C.. ADD SYSTEM MOTION VECTOR HERE

C.. DT=0 GIVES OBSERVED DATA IF DX,DY USED THEN
C.. DT WILL BE S5-MIN TRANSLATION OF DATA AND CLUSTERS, DX,DY ARE
C.. SYSTEM DISPLACEMENT VECTORS FOR 5-MIN INTERVAL FOR EACH DT
C.. DT=2 IS 10 MIN ETC...
c

ISTOP=1

TINCR=5000.

KZ=1

DT=0.

DX=4 .45*DT

DY=-7.95*DT

WRITE(6,2233) ATIME, BTIME, DT, DX, DY
2233 FORMAT(1H1/1X,’TIME INTERVAL PROCESSED =’,2F10.2,’ DT,DX,DY=’,

*3F8.2/)
DO 5 LC=1,KK
CM(LC,1)=CM(LC,1)+DX
CM(LC, 2) =CM(LC, 2) +DY
5 CONTINUE
XB=0.
¥B=0.
IDAY=15
KNUMB=0
IRADII=200
INCR=5
NROW= (IRADIT#2) /INCR
NCOL=NROW
IMIDPT=NROW/2
¢ *## READ 1IN NEXT RECORD FROM DISK FILE STAT2A_.
c
10 READ(10, 5000, END=993) NNUMB, TSOLN, TLAT, TLON,X, ¥
IF (TSOLN.GE.BTIME2) GOTO 37
IF (TSOLN.LT.ATIME) GOTO 10
c WRITE (6,5000) NNUMB,TSOLN, TLAT, TLON,X, Y
5000 FORMAT (16,2X,5(F12.5,1X))
IF (TSOLN.GE.BTIME) GOTO 37
X=X+DX
Y=Y+DY
SMTRIX (KNUMB+1,1)=X
SMTRIX (KNUMB+1,2) =Y
XB=XB+X
YB=YB+Y
KNUMB=KNUMB+1
GOTO 10
60 CONTINUE
17 NOBS=KNUMB
WRITE(6,2211) NOBS,NVAR,LDX,IFRQ,INWT, (IND(J),J=1,NVAR},
* KK, MAXIT
2211 FORMAT (1H1,1X, ‘NOBS ETC...’,918/)

185

CrRIGINAL PAGE IS

OF POOR QUALITY



C.. ASSEMBLE S5 MIN GRIDS

DO 40 I=1,KNUMB
JL=20+INT (SMTRIX(I,1)/10.)
IL=20-INT (SMTRIX(I,2)/10.)
LGRID(IL,JL,KZ)=LGRID(IL,JL,KZ)+1
LSEED(IL,JL,KZ)~LGRID(IL,JL,K2)

o CONTINUE

.. FIND SET OF SEEDS FROM DENSITY GRID

(e NN e X

DO 90 IL=2,39

DO 90 JL=2,39
N1=LSEED(IL-1,JL~1,KZ)
N2=LSEED(IL-1,JL,KZ)
N3=LSEED(IL-1,JL+1,XZ)
N4=LSEED(IL,JL-1,K2)
N5=LSEED(IL,JL,KZ)
N6=LSEED(IL,JL+1,K2)
N7=LSEED(IL+1,JL-1,KZ)
N8=LSEED(IL+1,JL,KZ)
N9=LSEED(IL+1,JL+1,KZ)
M1=LGRID(IL-1,JL~1,KZ)
M2=LGRID(IL~-1,JL,KZ)
M3=LGRID(IL-1,JL+1,KZ)
M4=LGRID(IL,JL-1,KZ)
M5=N5
M6=LGRID(IL,JL+1,KZ)
M7=LGRID(IL+1,JL~1,KZ)
M8=LGRID(IL+1,JL,KZ)
M9=LGRID(IL+1,JL+1,KZ)
IF(NS.LE.N1.OR.N5.LE.N2.OR.N5.LE.N3.0R.N5S.LE.N4.OR.N5.LE.N6.

* OR.N5.LE.N7.OR.N5.LE.N8.OR.N5.LE.N9) LSEED(IL,JL,KZ)=0
IF (M5.LT.M1.0R.M5.LT.M2.0R.X5.LT.M3,0R.M5.LT. M4 .OR. M5. LT . M6)
* LSEED(IL,JL,KZ)=0
90  CONTINUE
WRITE(6,190) ATIME,BTIME
190 FORMAT(1H1/1X, ‘TIME INTERVAL’,2F10.2/2X,‘FIRST GUESS FOR SEEDS‘/)
DO 95 IJ=1,40
WRITE(6,2902) 13, (LSEED(1J,JJ,K2) ,JJ=1,40)
95  CONTINUE
WRITE(6,2904) (I,I=1,40)
c
C.. CONVERT GRID POINT INDEXES INTO X,Y POINTS FOR SEEDING CLUSTERS
c
KK=0
DO 110 I=1,40
DO 110 J=1,40
IF(LSEED(I,J,KZ) .GT.0) THEN
K1=KK+1
CM(K1,1)=FPLOAT (J-20) #10.+DX
CM(K1,2)=FLOAT (20-I) *10.+DY
WRITE(6,2220) I,J,KZ,K1,LSEED(I,J,KZ), (CM(KK+1,JJ),JJ=1,2)
2220 FORMAT (1X,‘I,J,KZ,K1 ’,414,’ VALUE=’,I4,’ SEED(X,Y)=’,2F8.2)
KK=KK+1
ENDIF
110 CONTINUE

(o]
C.. FIND MEAN X,Y OF DATA SET FOR SYSTEM MOTION VECTOR
(o}

XBAR (K2 ) =XB/ KNUMB
YBAR (KZ) =YB/KNUMB
WRITE(6,2900) ATIME, BTIME, KNUMB,KZ XBAR(KZ) YBAR(KZ) DX, DY, DT
2900 FORHAT(IHI/lX ’INTERVAL- ',1’10 2 ZX F10.2,’ KNUMB= ,16,
*/ KZ=’,I2,’ (XBAR,YBAR) SYSTEH-(' PG 1,’,’,F6.1,")'/
%’ DX=’,F8.2,’ DY=’,F8.2,’ DT=',F8.2/)

DO 80 IJ=1,40
c JI=40-IJ+1
WRITE(6,2902) IJ,(LGRID(IJ,JJ,K2),JJ=1,40)
2902 FORMAT(1X,I2,40(1X,I2))
80  CONTINUE
WRITE(6,2904) (I,I=1,40)
2904  FORMAT(3X,40(1X,I2))
WRITE(6,1299) NOBS,KK,XBAR(KZ),YBAR(KZ),DT,DX,DY,ATIME, BTIME
1299  FORMAT(1X, ‘NOBS,SEEDS=‘,2I4,2X,’XBAR= ’,F10.2,2X, ’YBAR= ’,
*F10.2,2X, 'DT =’,F8.2,2X, 'DX= ’,FB.2,2X,’DY= ’,F8.2/2X,’INTERVAL’,
*F12.3,2X,F12.3/)
IF(ISTOP.EQ.1) STOP 993
993  sTOP
END
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